878 resultados para robot localization
Resumo:
Locomotion and autonomy in humanoid robots is of utmost importance in integrating them into social and community service type roles. However, the limited range and speed of these robots severely limits their ability to be deployed in situations where fast response is necessary. While the ability for a humanoid to drive a vehicle would aide in increasing their overall mobility, the ability to mount and dismount a vehicle designed for human occupants is a non-trivial problem. To address this issue, this paper presents an innovative approach to enabling a humanoid robot to mount and dismount a vehicle by proposing a simple mounting bracket involving no moving parts. In conjunction with a purpose built robotic vehicle, the mounting bracket successfully allowed a humanoid Nao robot to mount, dismount and drive the vehicle.
Resumo:
This paper presents a low-bandwidth multi-robot communication system designed to serve as a backup communication channel in the event a robot suffers a network device fault. While much research has been performed in the area of distributing network communication across multiple robots within a system, individual robots are still susceptible to hardware failure. In the past, such robots would simply be removed from service, and their tasks re-allocated to other members. However, there are times when a faulty robot might be crucial to a mission, or be able to contribute in a less communication intensive area. By allowing robots to encode and decode messages into unique sequences of DTMF symbols, called words, our system is able to facilitate continued low-bandwidth communication between robots without access to network communication. Our results have shown that the system is capable of permitting robots to negotiate task initiation and termination, and is flexible enough to permit a pair of robots to perform a simple turn taking task.
Resumo:
Mobile robots and animals alike must effectively navigate their environments in order to achieve their goals. For animals goal-directed navigation facilitates finding food, seeking shelter or migration; similarly robots perform goal-directed navigation to find a charging station, get out of the rain or guide a person to a destination. This similarity in tasks extends to the environment as well; increasingly, mobile robots are operating in the same underwater, ground and aerial environments that animals do. Yet despite these similarities, goal-directed navigation research in robotics and biology has proceeded largely in parallel, linked only by a small amount of interdisciplinary research spanning both areas. Most state-of-the-art robotic navigation systems employ a range of sensors, world representations and navigation algorithms that seem far removed from what we know of how animals navigate; their navigation systems are shaped by key principles of navigation in ‘real-world’ environments including dealing with uncertainty in sensing, landmark observation and world modelling. By contrast, biomimetic animal navigation models produce plausible animal navigation behaviour in a range of laboratory experimental navigation paradigms, typically without addressing many of these robotic navigation principles. In this paper, we attempt to link robotics and biology by reviewing the current state of the art in conventional and biomimetic goal-directed navigation models, focusing on the key principles of goal-oriented robotic navigation and the extent to which these principles have been adapted by biomimetic navigation models and why.
Resumo:
This thesis demonstrates that robots can learn about how the world changes, and can use this information to recognise where they are, even when the appearance of the environment has changed a great deal. The ability to localise in highly dynamic environments using vision only is a key tool for achieving long-term, autonomous navigation in unstructured outdoor environments. The proposed learning algorithms are designed to be unsupervised, and can be generated by the robot online in response to its observations of the world, without requiring information from a human operator or other external source.
Resumo:
The aim of this ethnographic study was to understand welding practices in shipyard environments with the purpose of designing an interactive welding robot that can help workers with their daily job. The robot is meant to be deployed for automatic welding on jack-up rig structures. The design of the robot turns out to be a challenging task due to several problematic working conditions on the shipyard, such as dust, irregular floor, high temperature, wind variations, elevated working platforms, narrow spaces, and circular welding paths requiring a robotic arm with more than 6 degrees of freedom. Additionally, the environment is very noisy and the workers – mostly foreigners – have a very basic level of English. These two issues need to be taken into account when designing the interactive user interface for the robot. Ideally, the communication flow between the two parties involved should be as frictionless as possible. The paper presents the results of our field observations and welders’ interviews, as well as our robot design recommendation for the next project stage.
Resumo:
Localization of technology is now widely applied to the preservation and revival of the culture of indigenous peoples around the world, most commonly through the translation into indigenous languages, which has been proven to increase the adoption of technology. However, this current form of localization excludes two demographic groups, which are key to the effectiveness of localization efforts in the African context: the younger generation (under the age of thirty) with an Anglo- American cultural view who have no need or interest in their indigenous culture; and the older generation (over the age of fifty) who are very knowledgeable about their indigenous culture, but have little or no knowledge on the use of a computer. This paper presents the design of a computer game engine that can be used to provide an interface for both technology and indigenous culture learning for both generations. Four indigenous Ugandan games are analyzed and identified for their attractiveness to both generations, to both rural and urban populations, and for their propensity to develop IT skills in older generations.
Resumo:
In this paper, the recent results of the space project IMPERA are presented. The goal of IMPERA is the development of a multirobot planning and plan execution architecture with a focus on a lunar sample collection scenario in an unknown environment. We describe the implementation and verification of different modules that are integrated into a distributed system architecture. The modules include a mission planning approach for a multirobot system and modules for task and skill execution within a lunar use-case scenario. The skills needed for the test scenario include cooperative exploration and mapping strategies for an unknown environment, the localization and classification of sample containers using a novel approach of semantic perception, and the skill of transporting sample containers to a collection point using a mobile manipulation robot. Additionally, we present our approach of a reliable communication framework that can deal with communication loss during the mission. Several modules are tested within several experiments in the domain of planning and plan execution, communication, coordinated exploration, perception, and object transportation. An overall system integration is tested on a mission scenario experiment using three robots.
Resumo:
We propose the use of optical flow information as a method for detecting and describing changes in the environment, from the perspective of a mobile camera. We analyze the characteristics of the optical flow signal and demonstrate how robust flow vectors can be generated and used for the detection of depth discontinuities and appearance changes at key locations. To successfully achieve this task, a full discussion on camera positioning, distortion compensation, noise filtering, and parameter estimation is presented. We then extract statistical attributes from the flow signal to describe the location of the scene changes. We also employ clustering and dominant shape of vectors to increase the descriptiveness. Once a database of nodes (where a node is a detected scene change) and their corresponding flow features is created, matching can be performed whenever nodes are encountered, such that topological localization can be achieved. We retrieve the most likely node according to the Mahalanobis and Chi-square distances between the current frame and the database. The results illustrate the applicability of the technique for detecting and describing scene changes in diverse lighting conditions, considering indoor and outdoor environments and different robot platforms.
Resumo:
A coverage algorithm is an algorithm that deploys a strategy as to how to cover all points in terms of a given area using some set of sensors. In the past decades a lot of research has gone into development of coverage algorithms. Initially, the focus was coverage of structured and semi-structured indoor areas, but with time and development of better sensors and introduction of GPS, the focus has turned to outdoor coverage. Due to the unstructured nature of an outdoor environment, covering an outdoor area with all its obstacles and simultaneously performing reliable localization is a difficult task. In this paper, two path planning algorithms suitable for solving outdoor coverage tasks are introduced. The algorithms take into account the kinematic constraints of an under-actuated car-like vehicle, minimize trajectory curvatures, and dynamically avoid detected obstacles in the vicinity, all in real-time. We demonstrate the performance of the coverage algorithm in the field by achieving 95% coverage using an autonomous tractor mower without the aid of any absolute localization system or constraints on the physical boundaries of the area.
Resumo:
The autonomous capabilities in collaborative unmanned aircraft systems are growing rapidly. Without appropriate transparency, the effectiveness of the future multiple Unmanned Aerial Vehicle (UAV) management paradigm will be significantly limited by the human agent’s cognitive abilities; where the operator’s CognitiveWorkload (CW) and Situation Awareness (SA) will present as disproportionate. This proposes a challenge in evaluating the impact of robot autonomous capability feedback, allowing the human agent greater transparency into the robot’s autonomous status - in a supervisory role. This paper presents; the motivation, aim, related works, experiment theory, methodology, results and discussions, and the future work succeeding this preliminary study. The results in this paper illustrates that, with a greater transparency of a UAV’s autonomous capability, an overall improvement in the subjects’ cognitive abilities was evident, that is, with a confidence of 95%, the test subjects’ mean CW was demonstrated to have a statistically significant reduction, while their mean SA was demonstrated to have a significant increase.
Resumo:
This thesis develops a novel approach to robot control that learns to account for a robot's dynamic complexities while executing various control tasks using inspiration from biological sensorimotor control and machine learning. A robot that can learn its own control system can account for complex situations and adapt to changes in control conditions to maximise its performance and reliability in the real world. This research has developed two novel learning methods, with the aim of solving issues with learning control of non-rigid robots that incorporate additional dynamic complexities. The new learning control system was evaluated on a real three degree-of-freedom elastic joint robot arm with a number of experiments: initially validating the learning method and testing its ability to generalise to new tasks, then evaluating the system during a learning control task requiring continuous online model adaptation.
Resumo:
Changing environments pose a serious problem to current robotic systems aiming at long term operation under varying seasons or local weather conditions. This paper is built on our previous work where we propose to learn to predict the changes in an environment. Our key insight is that the occurring scene changes are in part systematic, repeatable and therefore predictable. The goal of our work is to support existing approaches to place recognition by learning how the visual appearance of an environment changes over time and by using this learned knowledge to predict its appearance under different environmental conditions. We describe the general idea of appearance change prediction (ACP) and investigate properties of our novel implementation based on vocabularies of superpixels (SP-ACP). Our previous work showed that the proposed approach significantly improves the performance of SeqSLAM and BRIEF-Gist for place recognition on a subset of the Nordland dataset under extremely different environmental conditions in summer and winter. This paper deepens the understanding of the proposed SP-ACP system and evaluates the influence of its parameters. We present the results of a large-scale experiment on the complete 10 h Nordland dataset and appearance change predictions between different combinations of seasons.