895 resultados para rabies prevention and control
Resumo:
This thesis presents an approach for a vertical infrastructure inspection using a vertical take-off and landing (VTOL) unmanned aerial vehicle and shared autonomy. Inspecting vertical structure such as light and power distribution poles is a difficult task. There are challenges involved with developing such an inspection system, such as flying in close proximity to a target while maintaining a fixed stand-off distance from it. The contributions of this thesis fall into three main areas. Firstly, an approach to vehicle dynamic modeling is evaluated in simulation and experiments. Secondly, EKF-based state estimators are demonstrated, as well as estimator-free approaches such as image based visual servoing (IBVS) validated with motion capture ground truth data. Thirdly, an integrated pole inspection system comprising a VTOL platform with human-in-the-loop control, (shared autonomy) is demonstrated. These contributions are comprehensively explained through a series of published papers.
Resumo:
Cross-talk between microtubule networks and sites of cell-matrix and cell-cell adhesion has profound impact on these structures and is essential for proper cell organization, polarization and motility. Components of adhesion sites can interact directly with microtubules or with proteins that specifically associate with microtubule plus ends and minus ends and in this way capture, stabilize or destabilize microtubules. In their turn, microtubules can serve as routes for delivery of structural and regulatory factors that control adhesion site turnover. In addition, the microtubule lattice or growing microtubule plus ends can serve as diffusional sinks that accumulate and scaffold regulatory molecules, thereby affecting their activity in the vicinity of adhesions. Combination of these mechanisms underlies the functional co-operation between microtubules and adhesion sites and defines their dynamic behavior.
Resumo:
This paper proposes a linear large signal state-space model for a phase controlled CLC (Capacitor Inductor Capacitor) Resonant Dual Active Bridge (RDAB). The proposed model is useful for fast simulation and for the estimation of state variables under large signal variation. The model is also useful for control design because the slow changing dynamics of the dq variables are relatively easy to control. Simulation results of the proposed model are presented and compared to the simulated circuit model to demonstrate the proposed model's accuracy. This proposed model was used for the design of a Proportional-Integral (PI) controller and it has been implemented in the circuit simulation to show the proposed models usefulness in control design.
Resumo:
Draglines are extremely large machines that are widely used in open-cut coal mines for overburden stripping. Since 1994 we have been working toward the development of a computer control system capable of automatically driving a dragline for a large portion of its operating cycle. This has necessitated the development and experimental evaluation of sensor systems, machines models, closed-loop control controllers, and an operator interface. This paper describes our steps toward the goal through scale-model and full-scale field experimentation.
Resumo:
Electric walking draglines are physically large and powerful machines used in the mining industry. However with the addition of suitable sensors and a controller a dragline can be considered as a numerically controlled machine or robot which can then perform parts of the operating cycle automatically. This paper presents an analysis of the electromechanical system necessary precursor to automatic control
Resumo:
Power line inspection is a vital function for electricity supply companies but it involves labor-intensive and expensive procedures which are tedious and error-prone for humans to perform. A possible solution is to use an unmanned aerial vehicle (UAV) equipped with video surveillance equipment to perform the inspection. This paper considers how a small, electrically driven rotorcraft conceived for this application could be controlled by visually tracking the overhead supply lines. A dynamic model for a ducted-fan rotorcraft is presented and used to control the action of an Air Vehicle Simulator (AVS), consisting of a cable-array robot. Results show how visual data can be used to determine, and hence regulate in closed loop, the simulated vehicle’s position relative to the overhead lines.
Resumo:
In the internet age, copyright owners are increasingly looking to online intermediaries to take steps to prevent copyright infringement. Sometimes these intermediaries are closely tied to the acts of infringement; sometimes – as in the case of ISPs – they are not. In 2012, the Australian High Court decided the Roadshow Films v iiNet case, in which it held that an Australian ISP was not liable under copyright’s authorization doctrine, which asks whether the intermediary has sanctioned, approved or countenanced the infringement. The Australian Copyright Act 1968 directs a court to consider, in these situations, whether the intermediary had the power to prevent the infringement and whether it took any reasonable steps to prevent or avoid the infringement. It is generally not difficult for a court to find the power to prevent infringement – power to prevent can include an unrefined technical ability to disconnect users from the copyright source, such as an ISP terminating users’ internet accounts. In the iiNet case, the High Court eschewed this broad approach in favor of focusing on a notion of control that was influenced by principles of tort law. In tort, when a plaintiff asserts that a defendant should be liable for failing to act to prevent harm caused to the plaintiff by a third party, there is a heavy burden on the plaintiff to show that the defendant had a duty to act. The duty must be clear and specific, and will often hinge on the degree of control that the defendant was able to exercise over the third party. Control in these circumstances relates directly to control over the third party’s actions in inflicting the harm. Thus, in iiNet’s case, the control would need to be directed to the third party’s infringing use of BitTorrent; control over a person’s ability to access the internet is too imprecise. Further, when considering omissions to act, tort law differentiates between the ability to control and the ability to hinder. The ability to control may establish a duty to act, and the court will then look to small measures taken to prevent the harm to determine whether these satisfy the duty. But the ability to hinder will not suffice to establish liability in the absence of control. This article argues that an inquiry grounded in control as defined in tort law would provide a more principled framework for assessing the liability of passive intermediaries in copyright. In particular, it would set a higher, more stable benchmark for determining the copyright liability of passive intermediaries, based on the degree of actual, direct control that the intermediary can exercise over the infringing actions of its users. This approach would provide greater clarity and consistency than has existed to date in this area of copyright law in Australia.
Resumo:
PCYCs, individually and as a whole, are highly valued in communities across Queensland. Participants in this evaluation identified numerous benefits of PCYCs, including: providing structured low-cost activities for young people and other community groups; developing positive relationships and trust between young people and police; developing young people into effective citizens; providing a safe place for young people and a hub for whole communities; addressing disadvantages faced by young people; and fostering social inclusion. Depending on the particular activities and programs delivered by a branch, PCYCs have the capacity to minimise risk factors and enhance protective factors relating to young people’s involvement in crime. For example, PCYCs can play an important role in strengthening young people’s engagement with education and family. However, the crime prevention and community safety aims of PCYCs, and measures that might work towards these aims are not widely- or well-understood, or appreciated, by those working in and with PCYCs. The key recommendation of this evaluation is therefore that the crime prevention and community safety aims of PCYCs in Queensland need to be better articulated, understood and reflected in the practice of those working in and with PCYCs. A related key finding is that many of the activities and programs currently provided by PCYCs could be better oriented towards the goals of crime prevention and community safety without major resource implications.
Resumo:
The inspection of marine vessels is currently performed manually. Inspectors use tools (e.g. cameras and devices for non-destructive testing) to detect damaged areas, cracks, and corrosion in large cargo holds, tanks, and other parts of a ship. Due to the size and complex geometry of most ships, ship inspection is time-consuming and expensive. The EU-funded project INCASS develops concepts for a marine inspection robotic assistant system to improve and automate ship inspections. In this paper, we introduce our magnetic wall–climbing robot: Marine Inspection Robotic Assistant (MIRA). This semiautonomous lightweight system is able to climb a vessels steel frame to deliver on-line visual inspection data. In addition, we describe the design of the robot and its building subsystems as well as its hardware and software components.
Resumo:
Issues Research shows that young people at risk of developing a substance use disorder often use substances to deal with problems, particularly relationship problems and emotional problems. Music listening is a widely available and engaging activity that may help young people address these problem areas. This study was part of a larger project to develop a phone app for young people in which they use music for emotional wellbeing. Approach Three focus groups with young people aged 15–25 years were conducted and the transcripts were analysed by three of the authors using a thematic analysis procedure (Braun & Clarke, 2006). Key Findings: Young people used music in four main ways to achieve wellbeing: relationship building through sharing music; cre- ating an ambience using music; using music to experience an emotion more fully; and using music to modify an emotion. Several mecha- nisms by which music achieved these functions were identified. Par- ticipants also articulated specific times when they would not use music and why. Discussion and Conclusions The information from these focus groups provides many avenues for the development of the app and for understanding how music listening helps young people to achieve wellbeing. These ideas can readily be used with young people at risk of developing substance use problems as it gives them an engaging and low cost alternative for managing their emotions and building relationships.
Resumo:
There is an increasing demand for Unmanned Aerial Systems (UAS) to carry suspended loads as this can provide significant benefits to several applications in agriculture, law enforcement and construction. The load impact on the underlying system dynamics should not be neglected as significant feedback forces may be induced on the vehicle during certain flight manoeuvres. The constant variation in operating point induced by the slung load also causes conventional controllers to demand increased control effort. Much research has focused on standard multi-rotor position and attitude control with and without a slung load. However, predictive control schemes, such as Nonlinear Model Predictive Control (NMPC), have not yet been fully explored. To this end, we present a novel controller for safe and precise operation of multi-rotors with heavy slung load in three dimensions. The paper describes a System Dynamics and Control Simulation Toolbox for use with MATLAB/SIMULINK which includes a detailed simulation of the multi-rotor and slung load as well as a predictive controller to manage the nonlinear dynamics whilst accounting for system constraints. It is demonstrated that the controller simultaneously tracks specified waypoints and actively damps large slung load oscillations. A linear-quadratic regulator (LQR) is derived and control performance is compared. Results show the improved performance of the predictive controller for a larger flight envelope, including aggressive manoeuvres and large slung load displacements. The computational cost remains relatively small, amenable to practical implementations.
Resumo:
This paper details the design and performance assessment of a unique collision avoidance decision and control strategy for autonomous vision-based See and Avoid systems. The general approach revolves around re-positioning a collision object in the image using image-based visual servoing, without estimating range or time to collision. The decision strategy thus involves determining where to move the collision object, to induce a safe avoidance manuever, and when to cease the avoidance behaviour. These tasks are accomplished by exploiting human navigation models, spiral motion properties, expected image feature uncertainty and the rules of the air. The result is a simple threshold based system that can be tuned and statistically evaluated by extending performance assessment techniques derived for alerting systems. Our results demonstrate how autonomous vision-only See and Avoid systems may be designed under realistic problem constraints, and then evaluated in a manner consistent to aviation expectations.
Resumo:
This paper discusses some of the sensing technologies and control approaches available for guiding robot manipulators for a class of underground mining tasks including drilling jumbos, bolting arms, shotcreters or explosive chargers. Data acquired with such sensors, in the laboratory and underground, is presented.