1000 resultados para petit moment transverse


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a sparse number of credible source models available from large-magnitude past earthquakes. A stochastic source model generation algorithm thus becomes necessary for robust risk quantification using scenario earthquakes. We present an algorithm that combines the physics of fault ruptures as imaged in laboratory earthquakes with stress estimates on the fault constrained by field observations to generate stochastic source models for large-magnitude (Mw 6.0-8.0) strike-slip earthquakes. The algorithm is validated through a statistical comparison of synthetic ground motion histories from a stochastically generated source model for a magnitude 7.90 earthquake and a kinematic finite-source inversion of an equivalent magnitude past earthquake on a geometrically similar fault. The synthetic dataset comprises of three-component ground motion waveforms, computed at 636 sites in southern California, for ten hypothetical rupture scenarios (five hypocenters, each with two rupture directions) on the southern San Andreas fault. A similar validation exercise is conducted for a magnitude 6.0 earthquake, the lower magnitude limit for the algorithm. Additionally, ground motions from the Mw7.9 earthquake simulations are compared against predictions by the Campbell-Bozorgnia NGA relation as well as the ShakeOut scenario earthquake. The algorithm is then applied to generate fifty source models for a hypothetical magnitude 7.9 earthquake originating at Parkfield, with rupture propagating from north to south (towards Wrightwood), similar to the 1857 Fort Tejon earthquake. Using the spectral element method, three-component ground motion waveforms are computed in the Los Angeles basin for each scenario earthquake and the sensitivity of ground shaking intensity to seismic source parameters (such as the percentage of asperity area relative to the fault area, rupture speed, and risetime) is studied.

Under plausible San Andreas fault earthquakes in the next 30 years, modeled using the stochastic source algorithm, the performance of two 18-story steel moment frame buildings (UBC 1982 and 1997 designs) in southern California is quantified. The approach integrates rupture-to-rafters simulations into the PEER performance based earthquake engineering (PBEE) framework. Using stochastic sources and computational seismic wave propagation, three-component ground motion histories at 636 sites in southern California are generated for sixty scenario earthquakes on the San Andreas fault. The ruptures, with moment magnitudes in the range of 6.0-8.0, are assumed to occur at five locations on the southern section of the fault. Two unilateral rupture propagation directions are considered. The 30-year probabilities of all plausible ruptures in this magnitude range and in that section of the fault, as forecast by the United States Geological Survey, are distributed among these 60 earthquakes based on proximity and moment release. The response of the two 18-story buildings hypothetically located at each of the 636 sites under 3-component shaking from all 60 events is computed using 3-D nonlinear time-history analysis. Using these results, the probability of the structural response exceeding Immediate Occupancy (IO), Life-Safety (LS), and Collapse Prevention (CP) performance levels under San Andreas fault earthquakes over the next thirty years is evaluated.

Furthermore, the conditional and marginal probability distributions of peak ground velocity (PGV) and displacement (PGD) in Los Angeles and surrounding basins due to earthquakes occurring primarily on the mid-section of southern San Andreas fault are determined using Bayesian model class identification. Simulated ground motions at sites within 55-75km from the source from a suite of 60 earthquakes (Mw 6.0 − 8.0) primarily rupturing mid-section of San Andreas fault are considered for PGV and PGD data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The propagation of waves in an extended, irregular medium is studied under the "quasi-optics" and the "Markov random process" approximations. Under these assumptions, a Fokker-Planck equation satisfied by the characteristic functional of the random wave field is derived. A complete set of the moment equations with different transverse coordinates and different wavenumbers is then obtained from the characteristic functional. The derivation does not require Gaussian statistics of the random medium and the result can be applied to the time-dependent problem. We then solve the moment equations for the phase correlation function, angular broadening, temporal pulse smearing, intensity correlation function, and the probability distribution of the random waves. The necessary and sufficient conditions for strong scintillation are also given.

We also consider the problem of diffraction of waves by a random, phase-changing screen. The intensity correlation function is solved in the whole Fresnel diffraction region and the temporal pulse broadening function is derived rigorously from the wave equation.

The method of smooth perturbations is applied to interplanetary scintillations. We formulate and calculate the effects of the solar-wind velocity fluctuations on the observed intensity power spectrum and on the ratio of the observed "pattern" velocity and the true velocity of the solar wind in the three-dimensional spherical model. The r.m.s. solar-wind velocity fluctuations are found to be ~200 km/sec in the region about 20 solar radii from the Sun.

We then interpret the observed interstellar scintillation data using the theories derived under the Markov approximation, which are also valid for the strong scintillation. We find that the Kolmogorov power-law spectrum with an outer scale of 10 to 100 pc fits the scintillation data and that the ambient averaged electron density in the interstellar medium is about 0.025 cm-3. It is also found that there exists a region of strong electron density fluctuation with thickness ~10 pc and mean electron density ~7 cm-3 between the PSR 0833-45 pulsar and the earth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new set of pure phase filters for realizing transverse superresolution is presented in this paper. The filters, whose significant features are their ability to tune and their simplicity, consist of one half-wave plate between two quarter-wave plates; the half-wave plate is made of two zones that can rotate with respect to each other. By rotating any zone of the half-wave plate, the central lobe width of the irradiance point spread function (PSF) in the transverse direction can be tunably reduced. At the same time, the axial intensity distribution is analysed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radial continuous transmittance filter is presented to realize transverse superresolution. It consists of two parallel polarizers and a radial birefringent element sandwiched between of them. By adjusting the angle between optical axis of the radial birefringent element and the polarization direction of the polarizers, transverse superresolution can be realized. But transverse superresolution is obtained at the cost of the axial resolution and the increase of the side-lobes in strength. So we then mend such filter, with it not only enhance the transverse resolution but also suppress the influence of the side-lobes and the reduction of the axial resolution. At the same time, the Strehl ratio increases. The advantage of such a filter used in superresolution technique is that it is easy to fabricate because its fabrication does not deal with the variation of the phase. (c) 2005 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I:

The perturbation technique developed by Rannie and Marble is used to study the effect of droplet solidification upon two-phase flow in a rocket nozzle. It is shown that under certain conditions an equilibrium flow exists, where the gas and particle phases have the same velocity and temperature at each section of the nozzle. The flow is divided into three regions: the first region, where the particles are all in the form of liquid droplets; a second region, over which the droplets solidify at constant freezing temperature; and a third region, where the particles are all solid. By a perturbation about the equilibrium flow, a solution is obtained for small particle slip velocities using the Stokes drag law and the corresponding approximation for heat transfer between the particle and gas phases. Singular perturbation procedure is required to handle the problem at points where solidification first starts and where it is complete. The effects of solidification are noticeable.

Part II:

When a liquid surface, in contact with only its pure vapor, is not in the thermodynamic equilibrium with it, a net condensation or evaporation of fluid occurs. This phenomenon is studied from a kinetic theory viewpoint by means of moment method developed by Lees. The evaporation-condensation rate is calculated for a spherical droplet and for a liquid sheet, when the temperatures and pressures are not too far removed from their equilibrium values. The solutions are valid for the whole range of Knudsen numbers from the free molecule to the continuum limit. In the continuum limit, the mass flux rate is proportional to the pressure difference alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Maxwell integral equations of transfer are applied to a series of problems involving flows of arbitrary density gases about spheres. As suggested by Lees a two sided Maxwellian-like weighting function containing a number of free parameters is utilized and a sufficient number of partial differential moment equations is used to determine these parameters. Maxwell's inverse fifth-power force law is used to simplify the evaluation of the collision integrals appearing in the moment equations. All flow quantities are then determined by integration of the weighting function which results from the solution of the differential moment system. Three problems are treated: the heat-flux from a slightly heated sphere at rest in an infinite gas; the velocity field and drag of a slowly moving sphere in an unbounded space; the velocity field and drag torque on a slowly rotating sphere. Solutions to the third problem are found to both first and second-order in surface Mach number with the secondary centrifugal fan motion being of particular interest. Singular aspects of the moment method are encountered in the last two problems and an asymptotic study of these difficulties leads to a formal criterion for a "well posed" moment system. The previously unanswered question of just how many moments must be used in a specific problem is now clarified to a great extent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By means of the Huygens-Fresnel diffraction integral, the field representation of a laser beam modulated by a hard-edged aperture is derived. The near-field and far-field transverse intensity distributions of the beams with different bandwidths are analyzed by using the representation. The numerical calculation results indicate that the amplitudes and numbers of the intensity spikes decrease with increasing bandwidth, and beam smoothing is achieved when the bandwidth takes a certain value in the near field. In the far field, the radius of the transverse intensity distribution decreases as the bandwidth increases, and the physical explanation of this fact is also given. (c) 2005 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from the Huygens-Fresnel diffraction integral, the field expressions of apertured polychromatic laser beams with Gaussian and Hermite-Gaussian transverse modes are derived. Influence of the bandwidth on the intensity distributions of the laser beams is analyzed. It is found that when the bandwidth increases, the amplitudes and numbers of the intensity spikes decrease and beam uniformity is improved in the near field and the width of transverse intensity distribution of the apertured beams decreases in the far field. Thus, the smoothing and narrowing effects can be achieved by increasing the bandwidth. Also, these effects are found in the laser beams with Hermite-Gaussian transverse modes as the bandwidth increases.(c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have proposed a new confocal readout system which is based on the combination of two N-zone circular phase-only transverse superresolving pupils to improve transverse superresolution. The procedure for designing such an improved system is presented. Results of comparisons between the performance of the proposed system and the transverse superresolving pupils indicate that with the same Strehl ratio the former has much higher transverse superresolution capacity and significantly lower sidelobe intensity. (c) 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have proposed a new confocal readout system which is based on the combination of two N-zone circular phase-only transverse superresolving pupils to improve transverse superresolution. The procedure for designing such an improved system is presented. Results of comparisons between the performance of the proposed system and the transverse superresolving pupils indicate that with the same Strehl ratio the former has much higher transverse superresolution capacity and significantly lower sidelobe intensity. (c) 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microtomografia computadorizada (computed microtomography - μCT) permite uma análise não destrutiva de amostras, além de possibilitar sua reutilização. A μCT permite também a reconstrução de objetos tridimensionais a partir de suas seções transversais que são obtidas interceptando a amostra através de planos paralelos. Equipamentos de μCT oferecem ao usuário diversas opções de configurações que alteram a qualidade das imagens obtidas afetando, dessa forma, o resultado esperado. Nesta tese foi realizada a caracterização e análise de imagens de μCT geradas pelo microtomógrafo SkyScan1174 Compact Micro-CT. A base desta caracterização é o processamento de imagens. Foram aplicadas técnicas de realce (brilho, saturação, equalização do histograma e filtro de mediana) nas imagens originais gerando novas imagens e em seguida a quantificação de ambos os conjuntos, utilizando descritores de textura (probabilidade máxima, momento de diferença, momento inverso de diferença, entropia e uniformidade). Os resultados mostram que, comparadas às originais, as imagens que passaram por técnicas de realce apresentaram melhoras quando gerados seus modelos tridimensionais.