875 resultados para modeling of data sources
Resumo:
The term "Brain Imaging" identi�es a set of techniques to analyze the structure and/or functional behavior of the brain in normal and/or pathological situations. These techniques are largely used in the study of brain activity. In addition to clinical usage, analysis of brain activity is gaining popularity in others recent �fields, i.e. Brain Computer Interfaces (BCI) and the study of cognitive processes. In this context, usage of classical solutions (e.g. f MRI, PET-CT) could be unfeasible, due to their low temporal resolution, high cost and limited portability. For these reasons alternative low cost techniques are object of research, typically based on simple recording hardware and on intensive data elaboration process. Typical examples are ElectroEncephaloGraphy (EEG) and Electrical Impedance Tomography (EIT), where electric potential at the patient's scalp is recorded by high impedance electrodes. In EEG potentials are directly generated from neuronal activity, while in EIT by the injection of small currents at the scalp. To retrieve meaningful insights on brain activity from measurements, EIT and EEG relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of the electric �field distribution therein. The inhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeo�ff between physical accuracy and technical feasibility, which currently severely limits the capabilities of these techniques. Moreover elaboration of data recorded requires usage of regularization techniques computationally intensive, which influences the application with heavy temporal constraints (such as BCI). This work focuses on the parallel implementation of a work-flow for EEG and EIT data processing. The resulting software is accelerated using multi-core GPUs, in order to provide solution in reasonable times and address requirements of real-time BCI systems, without over-simplifying the complexity and accuracy of the head models.
Resumo:
Die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen fasziniert sowohl aus angewandter als auch theoretischer Sicht. Sie ist ein wichtiger Aspekt in vielen Anwendungen, unter anderem in chirugischen Implantaten oder Biosensoren. Sie ist außerdem ein Beispiel für theoretische Fragestellungen betreffend die Grenzfläche zwischen harter und weicher Materie. Fest steht, dass Kenntnis der beteiligten Mechanismen erforderlich ist um die Wechselwirkung zwischen Proteinen und Oberflächen zu verstehen, vorherzusagen und zu optimieren. Aktuelle Fortschritte im experimentellen Forschungsbereich ermöglichen die Untersuchung der direkten Peptid-Metall-Bindung. Dadurch ist die Erforschung der theoretischen Grundlagen weiter ins Blickfeld aktueller Forschung gerückt. Eine Möglichkeit die Wechselwirkung zwischen Proteinen und anorganischen Oberflächen zu erforschen ist durch Computersimulationen. Obwohl Simulationen von Metalloberflächen oder Proteinen als Einzelsysteme schon länger verbreitet sind, bringt die Simulation einer Kombination beider Systeme neue Schwierigkeiten mit sich. Diese zu überwinden erfordert ein Mehrskalen-Verfahren: Während Proteine als biologische Systeme ausreichend mit klassischer Molekulardynamik beschrieben werden können, bedarf die Beschreibung delokalisierter Elektronen metallischer Systeme eine quantenmechanische Formulierung. Die wichtigste Voraussetzung eines Mehrskalen-Verfahrens ist eine Übereinstimmung der Simulationen auf den verschiedenen Skalen. In dieser Arbeit wird dies durch die Verknüpfung von Simulationen alternierender Skalen erreicht. Diese Arbeit beginnt mit der Untersuchung der Thermodynamik der Benzol-Hydratation mittels klassischer Molekulardynamik. Dann wird die Wechselwirkung zwischen Wasser und den [111]-Metalloberflächen von Gold und Nickel mittels eines Multiskalen-Verfahrens modelliert. In einem weiteren Schritt wird die Adsorbtion des Benzols an Metalloberflächen in wässriger Umgebung studiert. Abschließend wird die Modellierung erweitert und auch die Aminosäuren Alanin und Phenylalanin einbezogen. Dies eröffnet die Möglichkeit realistische Protein- Metall-Systeme in Computersimulationen zu betrachten und auf theoretischer Basis die Wechselwirkung zwischen Peptiden und Oberflächen für jede Art Peptide und Oberfläche vorauszusagen.
Resumo:
This thesis tackles the problem of the automated detection of the atmospheric boundary layer (BL) height, h, from aerosol lidar/ceilometer observations. A new method, the Bayesian Selective Method (BSM), is presented. It implements a Bayesian statistical inference procedure which combines in an statistically optimal way different sources of information. Firstly atmospheric stratification boundaries are located from discontinuities in the ceilometer back-scattered signal. The BSM then identifies the discontinuity edge that has the highest probability to effectively mark the BL height. Information from the contemporaneus physical boundary layer model simulations and a climatological dataset of BL height evolution are combined in the assimilation framework to assist this choice. The BSM algorithm has been tested for four months of continuous ceilometer measurements collected during the BASE:ALFA project and is shown to realistically diagnose the BL depth evolution in many different weather conditions. Then the BASE:ALFA dataset is used to investigate the boundary layer structure in stable conditions. Functions from the Obukhov similarity theory are used as regression curves to fit observed velocity and temperature profiles in the lower half of the stable boundary layer. Surface fluxes of heat and momentum are best-fitting parameters in this exercise and are compared with what measured by a sonic anemometer. The comparison shows remarkable discrepancies, more evident in cases for which the bulk Richardson number turns out to be quite large. This analysis supports earlier results, that surface turbulent fluxes are not the appropriate scaling parameters for profiles of mean quantities in very stable conditions. One of the practical consequences is that boundary layer height diagnostic formulations which mainly rely on surface fluxes are in disagreement to what obtained by inspecting co-located radiosounding profiles.
Resumo:
In this thesis, we extend some ideas of statistical physics to describe the properties of human mobility. By using a database containing GPS measures of individual paths (position, velocity and covered space at a spatial scale of 2 Km or a time scale of 30 sec), which includes the 2% of the private vehicles in Italy, we succeed in determining some statistical empirical laws pointing out "universal" characteristics of human mobility. Developing simple stochastic models suggesting possible explanations of the empirical observations, we are able to indicate what are the key quantities and cognitive features that are ruling individuals' mobility. To understand the features of individual dynamics, we have studied different aspects of urban mobility from a physical point of view. We discuss the implications of the Benford's law emerging from the distribution of times elapsed between successive trips. We observe how the daily travel-time budget is related with many aspects of the urban environment, and describe how the daily mobility budget is then spent. We link the scaling properties of individual mobility networks to the inhomogeneous average durations of the activities that are performed, and those of the networks describing people's common use of space with the fractional dimension of the urban territory. We study entropy measures of individual mobility patterns, showing that they carry almost the same information of the related mobility networks, but are also influenced by a hierarchy among the activities performed. We discover that Wardrop's principles are violated as drivers have only incomplete information on traffic state and therefore rely on knowledge on the average travel-times. We propose an assimilation model to solve the intrinsic scattering of GPS data on the street network, permitting the real-time reconstruction of traffic state at a urban scale.
Resumo:
Atmospheric aerosol particles serving as cloud condensation nuclei (CCN) are key elements of the hydrological cycle and climate. Knowledge of the spatial and temporal distribution of CCN in the atmosphere is essential to understand and describe the effects of aerosols in meteorological models. In this study, CCN properties were measured in polluted and pristine air of different continental regions, and the results were parameterized for efficient prediction of CCN concentrations.The continuous-flow CCN counter used for size-resolved measurements of CCN efficiency spectra (activation curves) was calibrated with ammonium sulfate and sodium chloride aerosols for a wide range of water vapor supersaturations (S=0.068% to 1.27%). A comprehensive uncertainty analysis showed that the instrument calibration depends strongly on the applied particle generation techniques, Köhler model calculations, and water activity parameterizations (relative deviations in S up to 25%). Laboratory experiments and a comparison with other CCN instruments confirmed the high accuracy and precision of the calibration and measurement procedures developed and applied in this study.The mean CCN number concentrations (NCCN,S) observed in polluted mega-city air and biomass burning smoke (Beijing and Pearl River Delta, China) ranged from 1000 cm−3 at S=0.068% to 16 000 cm−3 at S=1.27%, which is about two orders of magnitude higher than in pristine air at remote continental sites (Swiss Alps, Amazonian rainforest). Effective average hygroscopicity parameters, κ, describing the influence of chemical composition on the CCN activity of aerosol particles were derived from the measurement data. They varied in the range of 0.3±0.2, were size-dependent, and could be parameterized as a function of organic and inorganic aerosol mass fraction. At low S (≤0.27%), substantial portions of externally mixed CCN-inactive particles with much lower hygroscopicity were observed in polluted air (fresh soot particles with κ≈0.01). Thus, the aerosol particle mixing state needs to be known for highly accurate predictions of NCCN,S. Nevertheless, the observed CCN number concentrations could be efficiently approximated using measured aerosol particle number size distributions and a simple κ-Köhler model with a single proxy for the effective average particle hygroscopicity. The relative deviations between observations and model predictions were on average less than 20% when a constant average value of κ=0.3 was used in conjunction with variable size distribution data. With a constant average size distribution, however, the deviations increased up to 100% and more. The measurement and model results demonstrate that the aerosol particle number and size are the major predictors for the variability of the CCN concentration in continental boundary layer air, followed by particle composition and hygroscopicity as relatively minor modulators. Depending on the required and applicable level of detail, the measurement results and parameterizations presented in this study can be directly implemented in detailed process models as well as in large-scale atmospheric and climate models for efficient description of the CCN activity of atmospheric aerosols.
Resumo:
The aim of this Thesis is to obtain a better understanding of the mechanical behavior of the active Alto Tiberina normal fault (ATF). Integrating geological, geodetic and seismological data, we perform 2D and 3D quasi-static and dynamic mechanical models to simulate the interseismic phase and rupture dynamic of the ATF. Effects of ATF locking depth, synthetic and antithetic fault activity, lithology and realistic fault geometries are taken in account. The 2D and 3D quasi-static model results suggest that the deformation pattern inferred by GPS data is consistent with a very compliant ATF zone (from 5 to 15 km) and Gubbio fault activity. The presence of the ATF compliant zone is a first order condition to redistribute the stress in the Umbria-Marche region; the stress bipartition between hanging wall (high values) and footwall (low values) inferred by the ATF zone activity could explain the microseismicity rates that are higher in the hanging wall respect to the footwall. The interseismic stress build-up is mainly located along the Gubbio fault zone and near ATF patches with higher dip (30°
Resumo:
Urban centers significantly contribute to anthropogenic air pollution, although they cover only a minor fraction of the Earth's land surface. Since the worldwide degree of urbanization is steadily increasing, the anthropogenic contribution to air pollution from urban centers is expected to become more substantial in future air quality assessments. The main objective of this thesis was to obtain a more profound insight in the dispersion and the deposition of aerosol particles from 46 individual major population centers (MPCs) as well as the regional and global influence on the atmospheric distribution of several aerosol types. For the first time, this was assessed in one model framework, for which the global model EMAC was applied with different representations of aerosol particles. First, in an approach with passive tracers and a setup in which the results depend only on the source location and the size and the solubility of the tracers, several metrics and a regional climate classification were used to quantify the major outflow pathways, both vertically and horizontally, and to compare the balance between pollution export away from and pollution build-up around the source points. Then in a more comprehensive approach, the anthropogenic emissions of key trace species were changed at the MPC locations to determine the cumulative impact of the MPC emissions on the atmospheric aerosol burdens of black carbon, particulate organic matter, sulfate, and nitrate. Ten different mono-modal passive aerosol tracers were continuously released at the same constant rate at each emission point. The results clearly showed that on average about five times more mass is advected quasi-horizontally at low levels than exported into the upper troposphere. The strength of the low-level export is mainly determined by the location of the source, while the vertical transport is mainly governed by the lifting potential and the solubility of the tracers. Similar to insoluble gas phase tracers, the low-level export of aerosol tracers is strongest at middle and high latitudes, while the regions of strongest vertical export differ between aerosol (temperate winter dry) and gas phase (tropics) tracers. The emitted mass fraction that is kept around MPCs is largest in regions where aerosol tracers have short lifetimes; this mass is also critical for assessing the impact on humans. However, the number of people who live in a strongly polluted region around urban centers depends more on the population density than on the size of the area which is affected by strong air pollution. Another major result was that fine aerosol particles (diameters smaller than 2.5 micrometer) from MPCs undergo substantial long-range transport, with about half of the emitted mass being deposited beyond 1000 km away from the source. In contrast to this diluted remote deposition, there are areas around the MPCs which experience high deposition rates, especially in regions which are frequently affected by heavy precipitation or are situated in poorly ventilated locations. Moreover, most MPC aerosol emissions are removed over land surfaces. In particular, forests experience more deposition from MPC pollutants than other land ecosystems. In addition, it was found that the generic treatment of aerosols has no substantial influence on the major conclusions drawn in this thesis. Moreover, in the more comprehensive approach, it was found that emissions of black carbon, particulate organic matter, sulfur dioxide, and nitrogen oxides from MPCs influence the atmospheric burden of various aerosol types very differently, with impacts generally being larger for secondary species, sulfate and nitrate, than for primary species, black carbon and particulate organic matter. While the changes in the burdens of sulfate, black carbon, and particulate organic matter show an almost linear response for changes in the emission strength, the formation of nitrate was found to be contingent upon many more factors, e.g., the abundance of sulfuric acid, than only upon the strength of the nitrogen oxide emissions. The generic tracer experiments were further extended to conduct the first risk assessment to obtain the cumulative risk of contamination from multiple nuclear reactor accidents on the global scale. For this, many factors had to be taken into account: the probability of major accidents, the cumulative deposition field of the radionuclide cesium-137, and a threshold value that defines contamination. By collecting the necessary data and after accounting for uncertainties, it was found that the risk is highest in western Europe, the eastern US, and in Japan, where on average contamination by major accidents is expected about every 50 years.
Resumo:
The kinematics is a fundamental tool to infer the dynamical structure of galaxies and to understand their formation and evolution. Spectroscopic observations of gas emission lines are often used to derive rotation curves and velocity dispersions. It is however difficult to disentangle these two quantities in low spatial-resolution data because of beam smearing. In this thesis, we present 3D-Barolo, a new software to derive the gas kinematics of disk galaxies from emission-line data-cubes. The code builds tilted-ring models in the 3D observational space and compares them with the actual data-cubes. 3D-Barolo works with data at a wide range of spatial resolutions without being affected by instrumental biases. We use 3D-Barolo to derive rotation curves and velocity dispersions of several galaxies in both the local and the high-redshift Universe. We run our code on HI observations of nearby galaxies and we compare our results with 2D traditional approaches. We show that a 3D approach to the derivation of the gas kinematics has to be preferred to a 2D approach whenever a galaxy is resolved with less than about 20 elements across the disk. We moreover analyze a sample of galaxies at z~1, observed in the H-alpha line with the KMOS/VLT spectrograph. Our 3D modeling reveals that the kinematics of these high-z systems is comparable to that of local disk galaxies, with steeply-rising rotation curves followed by a flat part and H-alpha velocity dispersions of 15-40 km/s over the whole disks. This evidence suggests that disk galaxies were already fully settled about 7-8 billion years ago. In summary, 3D-Barolo is a powerful and robust tool to separate physical and instrumental effects and to derive a reliable kinematics. The analysis of large samples of galaxies at different redshifts with 3D-Barolo will provide new insights on how galaxies assemble and evolve throughout cosmic time.
Resumo:
In der Erdöl– und Gasindustrie sind bildgebende Verfahren und Simulationen auf der Porenskala im Begriff Routineanwendungen zu werden. Ihr weiteres Potential lässt sich im Umweltbereich anwenden, wie z.B. für den Transport und Verbleib von Schadstoffen im Untergrund, die Speicherung von Kohlendioxid und dem natürlichen Abbau von Schadstoffen in Böden. Mit der Röntgen-Computertomografie (XCT) steht ein zerstörungsfreies 3D bildgebendes Verfahren zur Verfügung, das auch häufig für die Untersuchung der internen Struktur geologischer Proben herangezogen wird. Das erste Ziel dieser Dissertation war die Implementierung einer Bildverarbeitungstechnik, die die Strahlenaufhärtung der Röntgen-Computertomografie beseitigt und den Segmentierungsprozess dessen Daten vereinfacht. Das zweite Ziel dieser Arbeit untersuchte die kombinierten Effekte von Porenraumcharakteristika, Porentortuosität, sowie die Strömungssimulation und Transportmodellierung in Porenräumen mit der Gitter-Boltzmann-Methode. In einer zylindrischen geologischen Probe war die Position jeder Phase auf Grundlage der Beobachtung durch das Vorhandensein der Strahlenaufhärtung in den rekonstruierten Bildern, das eine radiale Funktion vom Probenrand zum Zentrum darstellt, extrahierbar und die unterschiedlichen Phasen ließen sich automatisch segmentieren. Weiterhin wurden Strahlungsaufhärtungeffekte von beliebig geformten Objekten durch einen Oberflächenanpassungsalgorithmus korrigiert. Die Methode der „least square support vector machine” (LSSVM) ist durch einen modularen Aufbau charakterisiert und ist sehr gut für die Erkennung und Klassifizierung von Mustern geeignet. Aus diesem Grund wurde die Methode der LSSVM als pixelbasierte Klassifikationsmethode implementiert. Dieser Algorithmus ist in der Lage komplexe geologische Proben korrekt zu klassifizieren, benötigt für den Fall aber längere Rechenzeiten, so dass mehrdimensionale Trainingsdatensätze verwendet werden müssen. Die Dynamik von den unmischbaren Phasen Luft und Wasser wird durch eine Kombination von Porenmorphologie und Gitter Boltzmann Methode für Drainage und Imbibition Prozessen in 3D Datensätzen von Böden, die durch synchrotron-basierte XCT gewonnen wurden, untersucht. Obwohl die Porenmorphologie eine einfache Methode ist Kugeln in den verfügbaren Porenraum einzupassen, kann sie dennoch die komplexe kapillare Hysterese als eine Funktion der Wassersättigung erklären. Eine Hysterese ist für den Kapillardruck und die hydraulische Leitfähigkeit beobachtet worden, welche durch die hauptsächlich verbundenen Porennetzwerke und der verfügbaren Porenraumgrößenverteilung verursacht sind. Die hydraulische Konduktivität ist eine Funktion des Wassersättigungslevels und wird mit einer makroskopischen Berechnung empirischer Modelle verglichen. Die Daten stimmen vor allem für hohe Wassersättigungen gut überein. Um die Gegenwart von Krankheitserregern im Grundwasser und Abwässern vorhersagen zu können, wurde in einem Bodenaggregat der Einfluss von Korngröße, Porengeometrie und Fluidflussgeschwindigkeit z.B. mit dem Mikroorganismus Escherichia coli studiert. Die asymmetrischen und langschweifigen Durchbruchskurven, besonders bei höheren Wassersättigungen, wurden durch dispersiven Transport aufgrund des verbundenen Porennetzwerks und durch die Heterogenität des Strömungsfeldes verursacht. Es wurde beobachtet, dass die biokolloidale Verweilzeit eine Funktion des Druckgradienten als auch der Kolloidgröße ist. Unsere Modellierungsergebnisse stimmen sehr gut mit den bereits veröffentlichten Daten überein.
Resumo:
In the present work, a detailed analysis of a Mediterranean TLC occurred in January 2014 has been conducted. The author is not aware of other studies regarding this particular event at the publication of this thesis. In order to outline the cyclone evolution, observational data, including weather-stations data, satellite data, radar data and photographic evidence, were collected at first. After having identified the cyclone path and its general features, the GLOBO, BOLAM and MOLOCH NWP models, developed at ISAC-CNR (Bologna), were used to simulate the phenomenon. Particular attention was paid on the Mediterranean phase as well as on the Atlantic phase, since the cyclone showed a well defined precursor up to 3 days before the minimum formation in the Alboran Sea. The Mediterranean phase has been studied using different combinations of GLOBO, BOLAM and MOLOCH models, so as to evaluate the best model chain to simulate this kind of phenomena. The BOLAM and MOLOCH models showed the best performance, by adjusting the path erroneously deviated in the National Centre for Environmental Prediction (NCEP) and ECMWF operational models. The analysis of the cyclone thermal phase shown the presence of a deep-warm core structure in many cases, thus confirming the tropical-like nature of the system. Furthermore, the results showed high sensitivity to initial conditions in the whole lifetime of the cyclone, while the Sea Surface Temperature (SST) modification leads only to small changes in the Adriatic phase. The Atlantic phase has been studied using GLOBO and BOLAM model and with the aid of the same methodology already developed. After tracing the precursor, in the form of a low-pressure system, from the American East Coast to Spain, the thermal phase analysis was conducted. The parameters obtained showed evidence of a deep-cold core asymmetric structure during the whole Atlantic phase, while the first contact with the Mediterranean Sea caused a sudden transition to a shallow-warm core structure. The examination of Potential Vorticity (PV) 3-dimensional structure revealed the presence of a PV streamer that individually formed over Greenland and eventually interacted with the low-pressure system over the Spanish coast, favouring the first phase of the cyclone baroclinic intensification. Finally, the development of an automated system that tracks and studies the thermal phase of Mediterranean cyclones has been encouraged. This could lead to the forecast of potential tropical transition, against with a minimum computational investment.
Resumo:
In questo elaborato, abbiamo tentato di modellizzare i processi che regolano la presenza dei domini proteici. I domini proteici studiati in questa tesi sono stati ottenuti dai genomi batterici disponibili nei data base pubblici (principalmente dal National Centre for Biotechnology Information: NCBI) tramite una procedura di simulazione computazionale. Ci siamo concentrati su organismi batterici in quanto in essi la presenza di geni trasmessi orizzontalmente, ossia che parte del materiale genetico non provenga dai genitori, e assodato che sia presente in una maggiore percentuale rispetto agli organismi più evoluti. Il modello usato si basa sui processi stocastici di nascita e morte, con l'aggiunta di un parametro di migrazione, usato anche nella descrizione dell'abbondanza relativa delle specie in ambito delle biodiversità ecologiche. Le relazioni tra i parametri, calcolati come migliori stime di una distribuzione binomiale negativa rinormalizzata e adattata agli istogrammi sperimentali, ci induce ad ipotizzare che le famiglie batteriche caratterizzate da un basso valore numerico del parametro di immigrazione abbiano contrastato questo deficit con un elevato valore del tasso di nascita. Al contrario, ipotizziamo che le famiglie con un tasso di nascita relativamente basso si siano adattate, e in conseguenza, mostrano un elevato valore del parametro di migrazione. Inoltre riteniamo che il parametro di migrazione sia direttamente proporzionale alla quantità di trasferimento genico orizzontale effettuato dalla famiglia batterica.
Resumo:
Statistical shape models (SSMs) have been used widely as a basis for segmenting and interpreting complex anatomical structures. The robustness of these models are sensitive to the registration procedures, i.e., establishment of a dense correspondence across a training data set. In this work, two SSMs based on the same training data set of scoliotic vertebrae, and registration procedures were compared. The first model was constructed based on the original binary masks without applying any image pre- and post-processing, and the second was obtained by means of a feature preserving smoothing method applied to the original training data set, followed by a standard rasterization algorithm. The accuracies of the correspondences were assessed quantitatively by means of the maximum of the mean minimum distance (MMMD) and Hausdorf distance (H(D)). Anatomical validity of the models were quantified by means of three different criteria, i.e., compactness, specificity, and model generalization ability. The objective of this study was to compare quasi-identical models based on standard metrics. Preliminary results suggest that the MMMD distance and eigenvalues are not sensitive metrics for evaluating the performance and robustness of SSMs.
Resumo:
Aquatic species can experience different selective pressures on morphology in different flow regimes. Species inhabiting lotic regimes often adapt to these conditions by evolving low-drag (i.e., streamlined) morphologies that reduce the likelihood of dislodgment or displacement. However, hydrodynamic factors are not the only selective pressures influencing organismal morphology and shapes well suited to flow conditions may compromise performance in other roles. We investigated the possibility of morphological trade-offs in the turtle Pseudemys concinna. Individuals living in lotic environments have flatter, more streamlined shells than those living in lentic environments; however, this flatter shape may also make the shells less capable of resisting predator-induced loads. We tested the idea that ‘‘lotic’’ shell shapes are weaker than ‘‘lentic’’ shell shapes, concomitantly examining effects of sex. Geometric morphometric data were used to transform an existing finite element shell model into a series of models corresponding to the shapes of individual turtles. Models were assigned identical material properties and loaded under identical conditions, and the stresses produced by a series of eight loads were extracted to describe the strength of the shells. ‘‘Lotic’’ shell shapes produced significantly higher stresses than ‘‘lentic’’ shell shapes, indicating that the former is weaker than the latter. Females had significantly stronger shell shapes than males, although these differences were less consistent than differences between flow regimes. We conclude that, despite the potential for many-to-one mapping of shell shape onto strength, P. concinna experiences a trade-off in shell shape between hydrodynamic and mechanical performance. This trade-off may be evident in many other turtle species or any other aquatic species that also depend on a shell for defense. However, evolution of body size may provide an avenue of escape from this trade-off in some cases, as changes in size can drastically affect mechanical performance while having little effect on hydrodynamic performance.
Resumo:
Objectives To examine the extent of multiplicity of data in trial reports and to assess the impact of multiplicity on meta-analysis results. Design Empirical study on a cohort of Cochrane systematic reviews. Data sources All Cochrane systematic reviews published from issue 3 in 2006 to issue 2 in 2007 that presented a result as a standardised mean difference (SMD). We retrieved trial reports contributing to the first SMD result in each review, and downloaded review protocols. We used these SMDs to identify a specific outcome for each meta-analysis from its protocol. Review methods Reviews were eligible if SMD results were based on two to ten randomised trials and if protocols described the outcome. We excluded reviews if they only presented results of subgroup analyses. Based on review protocols and index outcomes, two observers independently extracted the data necessary to calculate SMDs from the original trial reports for any intervention group, time point, or outcome measure compatible with the protocol. From the extracted data, we used Monte Carlo simulations to calculate all possible SMDs for every meta-analysis. Results We identified 19 eligible meta-analyses (including 83 trials). Published review protocols often lacked information about which data to choose. Twenty-four (29%) trials reported data for multiple intervention groups, 30 (36%) reported data for multiple time points, and 29 (35%) reported the index outcome measured on multiple scales. In 18 meta-analyses, we found multiplicity of data in at least one trial report; the median difference between the smallest and largest SMD results within a meta-analysis was 0.40 standard deviation units (range 0.04 to 0.91). Conclusions Multiplicity of data can affect the findings of systematic reviews and meta-analyses. To reduce the risk of bias, reviews and meta-analyses should comply with prespecified protocols that clearly identify time points, intervention groups, and scales of interest.
Resumo:
This thesis explores system performance for reconfigurable distributed systems and provides an analytical model for determining throughput of theoretical systems based on the OpenSPARC FPGA Board and the SIRC Communication Framework. This model was developed by studying a small set of variables that together determine a system¿s throughput. The importance of this model is in assisting system designers to make decisions as to whether or not to commit to designing a reconfigurable distributed system based on the estimated performance and hardware costs. Because custom hardware design and distributed system design are both time consuming and costly, it is important for designers to make decisions regarding system feasibility early in the development cycle. Based on experimental data the model presented in this paper shows a close fit with less than 10% experimental error on average. The model is limited to a certain range of problems, but it can still be used given those limitations and also provides a foundation for further development of modeling reconfigurable distributed systems.