790 resultados para laser, fibre, ottiche, moduli, connettori, lenti
Resumo:
The emission wavelength of a GaInNAs quantum well (QW) laser was adjusted to 1310 nm, the zero dispersion wavelength of optical fibre, by an appropriate choice of QW composition and thickness and N concentration in the barriers. A triple QW design was employed to enable the use of a short cavity with a small photon lifetime while having sufficient differential gain for a large modulation bandwidth. High speed, ridge waveguide lasers fabricated from high quality material grown by molecular beam epitaxy exhibited a damped modulation response with a bandwidth of 13 GHz.
Resumo:
A distributed-feedback (DFB) laser and a high-speed electroabsorption (EA) modulator are integrated, on the basis of the selective area MOVPE growth (SAG) technique and the ridge waveguide structure, for a 10 Gbit s(-1) optical transmission system. The integrated DFB laser/EA modulator device is packaged in a compact module with a 20% optical coupling efficiency to the single-mode fibre. The typical threshold current is 15 mA, and the side-mode suppression ratio is over 40 dB with the single-mode operation at 1550 nm. The module exhibits 1.2 mW fibre output power at a laser gain current of 70 mA and a modulator bias voltage of 0 V. The 3 dB bandwidth is 12 GHz. A dynamic extinction ratio of over 10 dB has been successfully achieved under 10 Gbit s(-1) non-return to zero (NRZ) operation, and a clearly open eye diagram is obtained.
Resumo:
We have demonstrated a 1.60 mu m ridge-structure laser diode and electroabsorption modulator monolithically integrated with buried-ridge-structure dual-waveguide spot-size converters at the input and output ports for low-loss coupling to a cleaved single-mode optical fibre by means of selective area growth and asymmetric twin waveguide technologies. The devices emit in single transverse and quasi-single longitudinal modes with a side mode suppression ratio of 25.6 dB. These devices exhibit 3 dB modulation bandwidth of 15.0 GHz and modulator extinction ratios of 14.0 dB dc. The output beam divergence angles of the spot-size converter in the horizontal and vertical directions are as small as 7.3 degrees x 10.6 degrees, respectively, resulting in 3.0 dB coupling loss with a cleaved single-mode optical fibre.
Resumo:
Resumo:
A novel integration technique has been developed using band-gap energy control of InGaAsP/InGaAsP multi-quantum-well (MQW) structures during simultaneous ultra-low-pressure (22 mbar) selective-area-growth (SAG) process in metal-organic chemical vapour deposition. A fundamental study of the controllability of band gap energy by the SAG method is performed. A large band-gap photoluminescence wavelength shift of 83nm is obtained with a small mask width variation (0-30 mu m). The method is then applied to fabricate an MQW distributed-feedback laser monolithically integrated with an electroabsorption modulator. The experimental results exhibit superior device characteristics with low threshold of 19 mA, over 24 dB extinction ratio when coupled into a single mode fibre. More than 10GHz modulation bandwidth is also achieved, which demonstrates that the ultra-low-pressure SAG technique is a promising approach for high-speed transmission photonic integrated circuits.
Resumo:
A ridge laser diode monolithically integrated with a buried-ridge-structure dual-waveguide spot-size converter operating at 1.58 mu m is successfully fabricated by means of low-energy ion implantation quantum well intermixing and asymmetric twin waveguide technology. The passive waveguide is optically combined with a laterally tapered active core to control the mode size. The devices emit in a single transverse and quasi single longitudinal mode with a side mode suppression ratio of 40.0dB although no grating is fabricated in the LD region. The threshold current is 50 mA. The beam divergence angles in the horizontal and vertical directions are as small as 7.3 degrees x 18.0 degrees, respectively, resulting in 3.0dB coupling loss With a cleaved single-mode optical fibre.
Resumo:
A 1.55-mum laser diode integrated with a spot-size converter was fabricated in a single step epitaxial by using the conventional photolithography and chemical wet etching process. The device was constructed by a conventional ridge waveguide active layer and a larger passive ridge-waveguide layer. The threshold current was 40 mA together with high slope efficiency of 0.24 W/A. The beam divergence angles in the horizontal and vertical directions were as small as 12.0degrees x 15.0degrees, respectively, resulting in about 3.2-dB coupling losses with a cleaved optical fibre.
Resumo:
Due to the zero dispersion point at 1.3-mu m in optical fibres, 1.3-mu m InGaAsP/InP laser diodes have become main light sources in fibre communication systems recently. In fluences of quantum noises on direct-modulated properties of single-mode 1.3-mu m InGaAsP/InP laser diodes are investigated in this article. Considering the carrier and photon noises and the cross-correlation between the two noises, the power spectrum of the photon density and the signal-to-noise ratio (SNR) of the direct-modulated single-mode laser system are calculated using the linear approximation method. We find that the stochastic resonance (SR) always appears in the dependence of the SNR on the bias current density, and is strongly affected by the cross-correlation coeffcient between the carrier and photon noises, the frequency of modulation signal, and the photon lifetime in the laser cavity. Hence, it is promising to use the SR mechanism to enhance the SNR of direct-modulated InGaAsP/InP laser diodes and improve the quality of optical fibre communication systems.
Resumo:
Details of the design, fabrication and testing of a strained InGaAsP/InGaAsP multiple quantum well (MQW) electroabsorption modulator (EAM) monolithically integrated with a DFB laser by ultra-low-pressure selective area growth (SAG) are presented. The method greatly simplifies the integration process. A study of the controllability of band-gap energy by SAG has been performed. After being completely packaged in a seven-pin butterfly compact module, the device successfully performs 10 Gb s(-1) nonreturn to zero (NRZ) operation on uncompensated transmission span >53 km in a standard fibre with a 8.7 dB dynamic extinction ratio. A receiver sensitivity of -18.9 dBm at a bit error rate (BER) of 10(-10) is confirmed. 10 GHz short pulse trains with 15.3 ps pulsewidth have also been generated.
Resumo:
Experimental demonstrations of the use of a self-imaging resonator in the phase locking of two fibre lasers are presented. The output power of the phase-locked fibre laser array exceeded 2 W Successful attempts of phase locking show that the fibre laser array is not only capable of producing high Output Power but also large on-axis intensity by this method.
Resumo:
On the basis of self-stability effect of four-wave mixings (FWMs) in high-nonlinear photonic-crystal fibres, a novel multi-wavelength erbium-doped fibre (EDF) laser is proposed and demonstrated experimentally at room temperature. The proposed lasers have the capacity of switching and tuning with excellent uniformity and stability. By means of adjusting the attenuators, the triple-, four-, or five-wavelength EDF lasers can be lasing simultaneously. With the assistance of the FWM self-stability function, the multi-wavelength spectrum is excellently stabilized with uniformity less than 0.9 dB.
Resumo:
Pulses of 177 fs and 1035 nm, with average power of 1.2 mW, have been generated directly from a passively mode-locked Yb-doped figure-of-eight fiber laser, with a nonlinear optical loop mirror for mode-locking and pairs of diffraction gratings for intracavity dispersion compensation. To our knowledge, these are the shortest pulses ever to come from a passively mode-locked Yb-doped figure-of-eight fiber laser. This represents a 5-fold reduction in pulse duration compared with that of previously reported passively mode-locked Yb-doped figure-of-eight fiber lasers. Stable pulse trains are produced at the fundamental repetition rate of the resonator, 24.0 MHz. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A novel integration technique has been developed using band-gap energy control of InGaAsP/InGaAsP multiquantum-well (MQW) structures during simultaneous ultra-low-pressure (22 mbar) selective-area-growth (SAG) process in metal-organic chemical vapour deposition. A fundamental study of the controllability of band gap energy by the SAG method is performed. A large band-gap photoluminescence wavelength shift of 83nm is obtained with a small mask width variation (0-30μm). The method is then applied to fabricate an MQW distributed-feedback laser monolithically integrated with an electroabsorption modulator. The experimental results exhibit superior device characteristics with low threshold of 19mA, over 24 dB extinction ratio when coupled into a single mode fibre. More than 10 GHz modulation bandwidth is also achieved, which demonstrates that the ultra-low-pressure SAG technique is a promising approach for high-speed transmission photonic integrated circuits.
Resumo:
In this thesis, a magneto-optical trap setup is used to laser cool and confine a cloud of 85Rb. The cloud typically contains 108 atoms in a 1 mm3 volume at a temperature in the region of the Doppler Limit (146 _K for 85Rb). To study the cold cloud, a subwavelength optical fibre - a nanofibre, or ONF - is positioned inside the cloud. The ONF can be used in two ways. Firstly, it is an efficient fluorescence collection tool for the cold atoms. Loading times, lifetimes and temperatures can be measured by coupling the atomic fluorescence to the evanescent region of the ONF. Secondly, the ONF is used as a probe beam delivery tool using the evanescent field properties of the device, allowing one to perform spectroscopy on few numbers of near-surface atoms. With improvements in optical density of the cloud, this system is an ideal candidate in which to generate electromagnetically induced transparency and slow light. A theoretical study of the van der Waals and Casimir-Polder interactions between an atom and a dielectric surface is also presented in this work in order to understand their effects in the spectroscopy of near-surface atoms.