325 resultados para isochronous cyclotron
Resumo:
In order to diagnose the electron cyclotron resonance (ECR) plasma, electron bremsstrahlung spectra were measured by a HPGe detector on Lanzhou ECR Ion Source No. 3 at IMP. The ion source was operated with argon under various working conditions, including different microwave power, mixing gas, extraction high voltage (HV), and so on. Some of the measured spectra are presented in this article. The dependence of energetic electron population on mixing gas and extraction HV is also described. Additionally, we are looking forward to further measurements on SECRAL (Superconducting ECR Ion Source with Advanced design at Lanzhou).
Resumo:
Electron cyclotron resonance (ECR) ion sources have been used for atomic physics research for a long time. With the development of atomic physics research in the Institute of Modern Physics (IMP), additional high performance experimental facilities are required. A 300 kV high voltage (HV) platform has been under construction since 2003, and an all permanent magnet ECR ion source is supposed to be put on the platform. Lanzhou all permanent magnet ECR ion source No. 2 (LAPECR2) is a latest developed all permanent magnet ECRIS. It is a 900 kg weight and circle divide 650 mm X 562 mm outer dimension (magnetic body) ion source. The injection magnetic field of the source is 1.28 T and the extraction magnetic field is 1.07 T. This source is designed to be running at 14.5 GHz. The high magnetic field inside the plasma chamber enables the source to give good performances at 14.5 GHz. LAPECR2 source is now under commissioning in IMP. In this article, the typical parameters of the source LAPECR2 are listed, and the typical results of the preliminary commissioning are presented.
Resumo:
A synchrotron is designed for tumour therapy with C6+ ions or proton. Its injector is a cyclotron, which delivers C5+ or H-2(+) ions to the synchrotron. After comparing the methods of the single-turn injection, the multi-turn injection and the stripping injection, this paper chooses the stripping injection method. In addition, the concept design of the injection system is presented, in which the synchrotron lattice is optimized.
Resumo:
The electron emission yield of the interaction of highly charged argon ions with silicon surface is reported. The experiment was done at the Atomic Physics Research Platform on the Electron Cyclotron Resonance (ECR) Ion Source of the National Laboratory HIRFL (Heavy Ion Research Facility in Lanzhou). In the experiment, the potential energy and kinetic energy was selected by varying the projectile charge states and extracting voltage, thus the contributions of the projectile potential energy deposition and electronic energy loss in the solid are extensively investigated. The results show that, the two main factors leading to surface electron emission, namely the potential energy deposition and the electronic energy loss, are both approximately proportional to the electron emission yield per ion.
Resumo:
The high charge state all permanent Electron Cyclotron Resonance Ion Source (ECRIS) LAPECR2 (Lanzhou All Permanent magnet ECR ion source No.2) has been successfully put on the 320kV HV platform at IMP and also has been connected with the successive LEBT system. This source is the largest and heaviest all permanent magnet ECRIS in the world. The maximum mirror field is 1.28T (without iron plug) and the effective plasma chamber volume is as large as circle divide 67mm x 255mm. It was designed to be operated at 14.5GHz and aimed to produce medium charge state and high charge state gaseous and also metallic ion beams. The source has already successfully delivered some intense gaseous ion beams to successive experimental terminals. This paper will give a brief overview of the basic features of this permanent magnet ECRIS. Then commissioning results of this source on the platform, the design of the extraction system together with the successive LEBT system will be presented.
Resumo:
CSR, a new accelerator project under the construction. to upgrade the existing heavy ion cyclotron system in Lanzhou, is a double cooling-storage-ring system. It consists of a main ring and an experimental ring. The heavy ion beams from the cyclotron system will be accumulated and accelerated first in the main ring, then extracted to produce radioactive ion beams or high-Z beams, and finally to be send to the second ring for internal-target experiments.
Resumo:
The HIRFL (Heavy Ion Research Facility at Lanzhou) is a cyclotron complex. Its injector is a cector focusing cyclotron with K=69. Since the HIRFL started the operation in 1989, two bigger items of improvements have been finished, the species and intensity of the accelerated particles are increased obviously. But due to the lower extraction efficiency of the SFC, on one hand, a lot of beam lost, and on other hand, outgas from the surface of the electrostatic deflector is serious because of beam hitting. Even sometimes the vacuum press is destroyed. In the paper a new physical design is made to get an extraction system of the SFC with a higher efficiency.
Resumo:
The status of the HIRFL (Heavy Ion Facility in Lanzhou) - Cooler Storage Ring (CSR) at the IMP is reported. The main physics goals at the HIRFL-CSR are the researches on nuclear structure and decay property, EOS of nuclear matter, hadron physics, highly charged atomic physics, high energy density physics, nuclear astrophysics, and applications for cancer therapy, space industries, materials and biology sciences. The HIRFL-CSR is the first ion cooler-storage-ring system in China, which consists of a main ring (CSRm), an experimental ring (CSRe) and a radioactive beamline (RIBLL2). The two existing cyclotrons SFC (K=70) and SSC (K=450) are used as its injectors. The 7MeV/u12C6+ ions were stored successfully in CSRm with the stripping injection in January 2006. After that, realized were the accelerations of C-12(6+), Ar-36(18+), Kr-78(28+) and Xe-129(27+) ions with energies of 1GeV/u, 1GeV/u, 450 MeV/u and 235 MeV/u, respectively, including accumulation, electron cooling and acceleration. In 2008, the first two isochronous mass measurement experiments with the primary beams of Ar-36(18+) and Kr-78(28+) were performed at CSRe with the Delta p/p similar to 10(-5).
Resumo:
A 52 MHz Radio Frequency Quadrupole (RFQ) linear accelerator (linac) is designed to serve as an initial structure for the SSC-Linac system (injector into Separated Sector Cyclotron). The designed injection and output energy are 3.5 keV/u and 143 keV/u, respectively. The beam dynamics in this RFQ have been studied using a three-dimensional Particle-In-Cell (PIC) code BEAMPATH. Simulation results show that this R,FQ structure is characterized by stable values of beam transmission efficiency (at least 95%) for both zero-current mode and the space charge dominated regime. The beam accelerated in the RFQ has good quality in both transverse and longitudinal directions, and could easily be accepted by Drift Tube Linac (DTL). The effect of the vane error and that of the space charge on the beam parameters have been studied as well to define the engineering tolerance for RFQ vane machining and alignment.
Resumo:
A linear accelerator as a new injector for the SSC (Separated Sector Cyclotron) of the HIRFL (Heavy ton Research Facility Lanzhou) is being designed. The DTL (Drift-Tube-Linac) has been designed to accelerate U-238(34+) from 0.140 MeV/u to 0.97 MeV/u. To the first accelerating tank which accelerates U-238(34+) to 0.54 MeV/u, the approach of Alternating-Phase-Focusing (APF) is applied. The phase array is obtained by coupling optimization software Dakota and beam optics code LINREV. With the hybrid of Multi-objective Genetic Algorithm (MOGA) and a pattern search method, an optimum array of asynchronous phases is determined. The final growth, both transversely and longitudinally, can meet the design requirements. In this paper, the deign optimization of the APF DTL is presented.
Resumo:
A new SSC (Separated Sector Cyclotron)-Linac is being designed to serve as an injector for the SSC at the HIRFL (Heavy Ion Research Facility Lanzhou). The beam intensity at the LEBT (Low Energy Beam Transport) for the heavy ions after the selection is typically low and the space charge effects are inconspicuous. The space charge effects become obvious when the beam current increases to a few hundred microamperes. The emittance growth deriving from the space charge effects may be particularly troublesome for the following linac and cyclotron. An optical system containing three solenoids has been designed for the LEBT to limit the beam emittance and to avoid the unnecessary beam loss in the cyclotron, as well as for the purpose of immunizing the LEBT emittance growth due to the space charge effects. The results of the PIG (Particle-In-Cell) mode simulation illustrate that this channel could limit the beam emittance growth and increase the beam brightness.
Resumo:
The Isochronous Mass Spectrometry is a high accurate mass spectrometer. A secondary electrons time detector has been developed and used for mass measurements. Secondary electrons from a thin carbon foil are accelerated by ail electric field and deflected 180 degrees by a magnetic field onto a micro-channel plate. The time detector has been tested with alpha particles and a time resolution of 197 ps (FWHM) was obtained in the laboratory. A mass resolution around 8 x 10(-6) For Delta m/m was achieved by using this time detector in a pilot mass measurement experiment.
Resumo:
Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e mu A of Xe37+, 1 e mu A of Xe43+, and 0.16 e mu A of Ne-like Xe44+. To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi31+ beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e mu A of Bi31+, 22 e mu A of Bi41+, and 1.5 e mu A of Bi50+ have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.
Resumo:
Experiments of Al-23 and Mg-22 radioactive beams bombarding a C-12 target at an energy of 60 similar to 70 A MeV have been performed at the projectile fragment separator beamline (RIPS) in the RIKEN Ring Cyclotron Facility to study the two-proton emission from Al-23 and Mg-22 excited states, respectively. The trajectorie of the decay products, namely Na-21 + p + p from Al-23 and Ne-20 + p + p from Mg-22, are clean identified. The relative momentum and opening angle between two protons in the rest frame of three body decay channels are obtained by relativistic-kinematics reconstruction. The results demonstrate that there are some di-proton emission components from He-2 cluster for the excited Al-23 and Mg-22.
Resumo:
An experiment of Mg-22 and Ne-20 beams bombarding on a C-12 target at an energy of 60 similar to 70 A MeV has been performed at the RIKEN projectile fragment separator (RIPS)in the RIKEN Ring Cyclotron Facility to study the two-proton correlated emission from Mg-22 and Ne-20 excited states. The two-protons momentum correlation functions have been obtained for Mg-22 and Ne-20, respectively. The trajectories of the Mg-22 decayed products (Ne-20 + p + p) were also measured to get the angular correlations between the two protons in Center of Mass of decaying system by relativistic-kinematics reconstruction. The results exhibit that Mg-22 has the features of He-2 cluster decay mechanism.