963 resultados para integral model
Resumo:
We investigate a class of simple models for Langevin dynamics of turbulent flows, including the one-layer quasi-geostrophic equation and the two-dimensional Euler equations. Starting from a path integral representation of the transition probability, we compute the most probable fluctuation paths from one attractor to any state within its basin of attraction. We prove that such fluctuation paths are the time reversed trajectories of the relaxation paths for a corresponding dual dynamics, which are also within the framework of quasi-geostrophic Langevin dynamics. Cases with or without detailed balance are studied. We discuss a specific example for which the stationary measure displays either a second order (continuous) or a first order (discontinuous) phase transition and a tricritical point. In situations where a first order phase transition is observed, the dynamics are bistable. Then, the transition paths between two coexisting attractors are instantons (fluctuation paths from an attractor to a saddle), which are related to the relaxation paths of the corresponding dual dynamics. For this example, we show how one can analytically determine the instantons and compute the transition probabilities for rare transitions between two attractors.
Resumo:
Non-Destructive Testing (NDT) of deep foundations has become an integral part of the industry's standard manufacturing processes. It is not unusual for the evaluation of the integrity of the concrete to include the measurement of ultrasonic wave speeds. Numerous methods have been proposed that use the propagation speed of ultrasonic waves to check the integrity of concrete for drilled shaft foundations. All such methods evaluate the integrity of the concrete inside the cage and between the access tubes. The integrity of the concrete outside the cage remains to be considered to determine the location of the border between the concrete and the soil in order to obtain the diameter of the drilled shaft. It is also economic to devise a methodology to obtain the diameter of the drilled shaft using the Cross-Hole Sonic Logging system (CSL). Performing such a methodology using the CSL and following the CSL tests is performed and used to check the integrity of the inside concrete, thus allowing the determination of the drilled shaft diameter without having to set up another NDT device.^ This proposed new method is based on the installation of galvanized tubes outside the shaft across from each inside tube, and performing the CSL test between the inside and outside tubes. From the performed experimental work a model is developed to evaluate the relationship between the thickness of concrete and the ultrasonic wave properties using signal processing. The experimental results show that there is a direct correlation between concrete thicknesses outside the cage and maximum amplitude of the received signal obtained from frequency domain data. This study demonstrates how this new method to measuring the diameter of drilled shafts during construction using a NDT method overcomes the limitations of currently-used methods. ^ In the other part of study, a new method is proposed to visualize and quantify the extent and location of the defects. It is based on a color change in the frequency amplitude of the signal recorded by the receiver probe in the location of defects and it is called Frequency Tomography Analysis (FTA). Time-domain data is transferred to frequency-domain data of the signals propagated between tubes using Fast Fourier Transform (FFT). Then, distribution of the FTA will be evaluated. This method is employed after CSL has determined the high probability of an anomaly in a given area and is applied to improve location accuracy and to further characterize the feature. The technique has a very good resolution and clarifies the exact depth location of any void or defect through the length of the drilled shaft for the voids inside the cage. ^ The last part of study also evaluates the effect of voids inside and outside the reinforcement cage and corrosion in the longitudinal bars on the strength and axial load capacity of drilled shafts. The objective is to quantify the extent of loss in axial strength and stiffness of drilled shafts due to presence of different types of symmetric voids and corrosion throughout their lengths.^
Resumo:
Many dynamical processes are subject to abrupt changes in state. Often these perturbations can be periodic and of short duration relative to the evolving process. These types of phenomena are described well by what are referred to as impulsive differential equations, systems of differential equations coupled with discrete mappings in state space. In this thesis we employ impulsive differential equations to model disease transmission within an industrial livestock barn. In particular we focus on the poultry industry and a viral disease of poultry called Marek's disease. This system lends itself well to impulsive differential equations. Entire cohorts of poultry are introduced and removed from a barn concurrently. Additionally, Marek's disease is transmitted indirectly and the viral particles can survive outside the host for weeks. Therefore, depopulating, cleaning, and restocking of the barn are integral factors in modelling disease transmission and can be completely captured by the impulsive component of the model. Our model allows us to investigate how modern broiler farm practices can make disease elimination difficult or impossible to achieve. It also enables us to investigate factors that may contribute to virulence evolution. Our model suggests that by decrease the cohort duration or by decreasing the flock density, Marek's disease can be eliminated from a barn with no increase in cleaning effort. Unfortunately our model also suggests that these practices will lead to disease evolution towards greater virulence. Additionally, our model suggests that if intensive cleaning between cohorts does not rid the barn of disease, it may drive evolution and cause the disease to become more virulent.
Resumo:
We give a relativistic spin network model for quantum gravity based on the Lorentz group and its q-deformation, the Quantum Lorentz Algebra. We propose a combinatorial model for the path integral given by an integral over suitable representations of this algebra. This generalises the state sum models for the case of the four-dimensional rotation group previously studied in gr-qc/9709028. As a technical tool, formulae for the evaluation of relativistic spin networks for the Lorentz group are developed, with some simple examples which show that the evaluation is finite in interesting cases. We conjecture that the `10J' symbol needed in our model has a finite value.
Resumo:
In this paper we show how to construct the Evans function for traveling wave solutions of integral neural field equations when the firing rate function is a Heaviside. This allows a discussion of wave stability and bifurcation as a function of system parameters, including the speed and strength of synaptic coupling and the speed of axonal signals. The theory is illustrated with the construction and stability analysis of front solutions to a scalar neural field model and a limiting case is shown to recover recent results of L. Zhang [On stability of traveling wave solutions in synaptically coupled neuronal networks, Differential and Integral Equations, 16, (2003), pp.513-536.]. Traveling fronts and pulses are considered in more general models possessing either a linear or piecewise constant recovery variable. We establish the stability of coexisting traveling fronts beyond a front bifurcation and consider parameter regimes that support two stable traveling fronts of different speed. Such fronts may be connected and depending on their relative speed the resulting region of activity can widen or contract. The conditions for the contracting case to lead to a pulse solution are established. The stability of pulses is obtained for a variety of examples, in each case confirming a previously conjectured stability result. Finally we show how this theory may be used to describe the dynamic instability of a standing pulse that arises in a model with slow recovery. Numerical simulations show that such an instability can lead to the shedding of a pair of traveling pulses.
Resumo:
Every year in the US and other cold-climate countries considerable amount of money is spent to restore structural damages in conventional bridges resulting from (or “caused by”) salt corrosion in bridge expansion joints. Frequent usage of deicing salt in conventional bridges with expansion joints results in corrosion and other damages to the expansion joints, steel girders, stiffeners, concrete rebar, and any structural steel members in the abutments. The best way to prevent these damages is to eliminate the expansion joints at the abutment and elsewhere and make the entire bridge abutment and deck a continuous monolithic structural system. This type of bridge is called Integral Abutment Bridge which is now widely used in the US and other cold-climate countries. In order to provide lateral flexibility, the entire abutment is constructed on piles. Piles used in integral abutments should have enough capacity in the perpendicular direction to support the vertical forces. In addition, piles should be able to withstand corrosive environments near the surface of the ground and maintain their performance during the lifespan of the bridge. Fiber Reinforced Polymer (FRP) piles are a new type of pile that can not only accommodate large displacements, but can also resist corrosion significantly better than traditional steel or concrete piles. The use of FRP piles extends the life of the pile which in turn extends the life of the bridge. This dissertation studies FRP piles with elliptical shapes. The elliptical shapes can simultaneously provide flexibility and stiffness in two perpendicular axes. The elliptical shapes can be made using the filament winding method which is a less expensive method of manufacturing compared to the pultrusion or other manufacturing methods. In this dissertation a new way is introduced to construct the desired elliptical shapes with the filament winding method. Pile specifications such as dimensions, number of layers, fiber orientation angles, material, and soil stiffness are defined as parameters and the effects of each parameter on the pile stresses and pile failure have been studied. The ANSYS software has been used to model the composite materials. More than 14,000 nonlinear finite element pile models have been created, each slightly different from the others. The outputs of analyses have been used to draw curves. Optimum values of the parameters have been defined using generated curves. The best approaches to find optimum shape, angle of fibers and types of composite material have been discussed.
Resumo:
Positioning and orientation precision of a multirotor aerial robot can be increased by using additional control loops for each of the driving units. As a result, one can eliminate lack of balance between true thrust forces. A control performance comparison of two proposed thrust controllers, namely robust controller designed with coefficient diagram method (CDM) and proportional, integral and derivative (PID) controller tuned with pole-placement law, is presented in the paper. The research has been conducted with respect to model/plant matching uncertainty and with the use of antiwindup compensators for a simple motor-rotor model approximated by first-order inertia plus delay. From the obtained simulation results one concludes that appropriate choice of AWC compensator improves tracking performance and increases robustness against parametric uncertainty.
Resumo:
Este artículo tiene como objetivo presentar los criterios que se deben tener en cuenta para contratar los servicios de los operadores logísticos. Las evidencias presentadas en este artículo se basan en información obtenida a través de encuestas, entrevistas, estudio de casos, sondeos y revisión de literatura. La principal conclusión muestra que la claridad contractual es clave en el surgimiento de un nuevo modelo de negocio que puede impulsar el desarrollo del país. Las empresas deben ver la contratación logística con una oportunidad estratégica, al igual que pensar en cada posible situación que se pueda presentar para así plasmar un curso de acción en el contrato
Resumo:
The clinical education is an integral part of the Health Science majors’ curriculum programs of the University of Aveiro’s School of Health (i.e., Nursing, Physical Therapy, Radiology, Radiotherapy and Speech-Language Pathology) and aims to develop clinical competences in order to generate excellent health care professionals. The organization was based on the Ecological Model of Clinical-Reflective Training, which was characterized by inter-institutional interaction and student’s reflection on actions on a professional setting. This study encompassed two moments of clinical internships in the Nursing, Physical Therapy, Radiology and Radiotherapy majors. The Clinical Internship I provided the 123 students with a global view of the health care professional activities. The Clinical Internship II, with 119 students, developed competences of each health professional. Questionnaires with categorical scales from 1 to 5 evaluated the organization and efficiency of the two internships. The results revealed averages over 3 in all items. In conclusion, the Ecological Model of Clinical-Reflective Training was well accepted by students and clinical supervisors. Applications in the health care area were demonstrated.
Resumo:
El objetivo de la presente investigación es realizar el estudio y análisis de los modelos de gestión aplicados en las pymes de Cuenca, en el sector comercial de venta al por mayor de artículos de bazar, a través de este capítulo se conoce aspectos generales del sector comercial, las Pymes a nivel nacional, la provincia, y la ciudad, en la que muestra su importancia y contribución en la economía de la ciudad. Posteriormente se desarrolla la propuesta de un modelo de gestión integral para la empresa Distribuidora Bravo Abad; la tesis se desarrolla en 5 capítulos, el segundo capítulo se realiza el análisis de la situación actual de la empresa, antecedentes generales, análisis del entorno, análisis de la industria, análisis interno. En el tercer capítulo se realiza el direccionamiento estratégico, organigrama, filosofía corporativa, desarrollando la misión, visión, valores, objetivo general, objetivos específicos, objetivos estratégicos, estrategias y el mapa estratégico. En el cuarto capítulo se construye el cuadro de mando integral o balance score card utilizando los indicadores y las perspectivas; se propone un plan operativo, para luego sugerir la evaluación y el monitoreo del cuadro de mando integral. Se finaliza con las conclusiones y recomendaciones de la propuesta del modelo de gestión, y su importancia para el funcionamiento de la empresa.
Resumo:
Introduction: The In vitro-in vivo pharmacokinetic correlation models (IVIVC) are a fundamental part of the drug discovery and development process. The ability to accurately predict the in vivo pharmacokinetic profile of a drug based on in vitro observations can have several applications during a successful development process. Objective: To develop a comprehensive model to predict the in vivo absorption of antiretroviral drugs based on permeability studies, in vitro and in vivo solubility and demonstrate its correlation with the pharmacokinetic profile in humans. Methods: Analytical tools to test the biopharmaceutical properties of stavudine, lamivudine y zidovudine were developed. The kinetics of dissolution, permeability in caco-2 cells and pharmacokinetics of absorption in rabbits and healthy volunteers were evaluated. Results: The cumulative areas under the curve (AUC) obtained in the permeability study with Caco-2 cells, the dissolution study and the pharmacokinetics in rabbits correlated with the cumulative AUC values in humans. These results demonstrated a direct relation between in vitro data and absorption, both in humans and in the in vivo model. Conclusions: The analytical methods and procedures applied to the development of an IVIVC model showed a strong correlation among themselves. These IVIVC models are proposed as alternative and cost/effective methods to evaluate the biopharmaceutical properties that determine the bioavailability of a drug and their application includes the development process, quality assurance, bioequivalence studies and pharmacosurveillance.
Resumo:
Tese (doutorado)—Universidade de Brasília, Faculdade de Economia, Administração e Contabilidade, Programa de Pós-Graduação em Administração, 2016.
Resumo:
Within academic institutions, writing centers are uniquely situated, socially rich sites for exploring learning and literacy. I examine the work of the Michigan Tech Writing Center's UN 1002 World Cultures study teams primarily because student participants and Writing Center coaches are actively engaged in structuring their own learning and meaning-making processes. My research reveals that learning is closely linked to identity formation and leading the teams is an important component of the coaches' educational experiences. I argue that supporting this type of learning requires an expanded understanding of literacy and significant changes to how learning environments are conceptualized and developed. This ethnographic study draws on data collected from recordings and observations of one semester of team sessions, my own experiences as a team coach and UN 1002 teaching assistant, and interviews with Center coaches prior to their graduation. I argue that traditional forms of assessment and analysis emerging from individualized instruction models of learning cannot fully account for the dense configurations of social interactions identified in the Center's program. Instead, I view the Center as an open system and employ social theories of learning and literacy to uncover how the negotiation of meaning in one context influences and is influenced by structures and interactions within as well as beyond its boundaries. I focus on the program design, its enaction in practice, and how engagement in this type of writing center work influences coaches' learning trajectories. I conclude that, viewed as participation in a community of practice, the learning theory informing the program design supports identity formation —a key aspect of learning as argued by Etienne Wenger (1998). The findings of this study challenge misconceptions of peer learning both in writing centers and higher education that relegate peer tutoring to the role of support for individualized models of learning. Instead, this dissertation calls for consideration of new designs that incorporate peer learning as an integral component. Designing learning contexts that cultivate and support the formation of new identities is complex, involves a flexible and opportunistic design structure, and requires the availability of multiple forms of participation and connections across contexts.
Resumo:
Non-Destructive Testing (NDT) of deep foundations has become an integral part of the industry’s standard manufacturing processes. It is not unusual for the evaluation of the integrity of the concrete to include the measurement of ultrasonic wave speeds. Numerous methods have been proposed that use the propagation speed of ultrasonic waves to check the integrity of concrete for drilled shaft foundations. All such methods evaluate the integrity of the concrete inside the cage and between the access tubes. The integrity of the concrete outside the cage remains to be considered to determine the location of the border between the concrete and the soil in order to obtain the diameter of the drilled shaft. It is also economic to devise a methodology to obtain the diameter of the drilled shaft using the Cross-Hole Sonic Logging system (CSL). Performing such a methodology using the CSL and following the CSL tests is performed and used to check the integrity of the inside concrete, thus allowing the determination of the drilled shaft diameter without having to set up another NDT device. This proposed new method is based on the installation of galvanized tubes outside the shaft across from each inside tube, and performing the CSL test between the inside and outside tubes. From the performed experimental work a model is developed to evaluate the relationship between the thickness of concrete and the ultrasonic wave properties using signal processing. The experimental results show that there is a direct correlation between concrete thicknesses outside the cage and maximum amplitude of the received signal obtained from frequency domain data. This study demonstrates how this new method to measuring the diameter of drilled shafts during construction using a NDT method overcomes the limitations of currently-used methods. In the other part of study, a new method is proposed to visualize and quantify the extent and location of the defects. It is based on a color change in the frequency amplitude of the signal recorded by the receiver probe in the location of defects and it is called Frequency Tomography Analysis (FTA). Time-domain data is transferred to frequency-domain data of the signals propagated between tubes using Fast Fourier Transform (FFT). Then, distribution of the FTA will be evaluated. This method is employed after CSL has determined the high probability of an anomaly in a given area and is applied to improve location accuracy and to further characterize the feature. The technique has a very good resolution and clarifies the exact depth location of any void or defect through the length of the drilled shaft for the voids inside the cage. The last part of study also evaluates the effect of voids inside and outside the reinforcement cage and corrosion in the longitudinal bars on the strength and axial load capacity of drilled shafts. The objective is to quantify the extent of loss in axial strength and stiffness of drilled shafts due to presence of different types of symmetric voids and corrosion throughout their lengths.
Resumo:
The Hybrid Monte Carlo algorithm is adapted to the simulation of a system of classical degrees of freedom coupled to non self-interacting lattices fermions. The diagonalization of the Hamiltonian matrix is avoided by introducing a path-integral formulation of the problem, in d + 1 Euclidean space–time. A perfect action formulation allows to work on the continuum Euclidean time, without need for a Trotter–Suzuki extrapolation. To demonstrate the feasibility of the method we study the Double Exchange Model in three dimensions. The complexity of the algorithm grows only as the system volume, allowing to simulate in lattices as large as 163 on a personal computer. We conclude that the second order paramagnetic–ferromagnetic phase transition of Double Exchange Materials close to half-filling belongs to the Universality Class of the three-dimensional classical Heisenberg model.