941 resultados para individual variability
Resumo:
International audience
Resumo:
Transcranial direct current stimulation (tDCS) is a method of non-invasive brain stimulation widely used to modulate cognitive functions. Recent studies, however, suggests that effects are unreliable, small and often non-significant at least when stimulation is applied in a single session to healthy individuals. We examined the effects of frontal and temporal lobe anodal tDCS on naming and reading tasks and considered possible interactions with linguistic activation and selection mechanisms as well possible interactions with item difficulty and participant individual variability. Across four separate experiments (N, Exp 1A = 18; 1B = 20; 1C = 18; 2 = 17), we failed to find any difference between real and sham stimulation. Moreover, we found no evidence of significant effects limited to particular conditions (i.e., those requiring suppression of semantic interference), to a subset of participants or to longer RTs. Our findings sound a cautionary note on using tDCS as a means to modulate cognitive performance. Consistent effects of tDCS may be difficult to demonstrate in healthy participants in reading and naming tasks, and be limited to cases of pathological neurophysiology and/or to the use of learning paradigms.
Resumo:
Thesis (Master, Kinesiology & Health Studies) -- Queen's University, 2016-09-27 19:34:16.86
Resumo:
Il est reconnu que la consommation d’acides gras (AG) oméga-3 (n-3) d’origine marine est bénéfique pour la prévention des maladies cardiovasculaires (MCV), notamment en raison de leurs effets hypotriglycéridémiants. Toutefois, il existe une importante hétérogénéité dans la réponse des triglycérides (TG) plasmatiques à une supplémentation en AG n-3 et ce phénomène est en partie attribuable à des facteurs génétiques. Notre groupe de recherche a récemment réalisé une étude d’association à l’échelle du génome (GWAS) sur les participants de l’étude Fatty Acid Sensor (FAS), qui a permis d’identifier plusieurs loci associés à la réponse des TG suite à une supplémentation de 3g d’AG n-3 par jour. La plupart de ces loci sont localisés dans les gènes IQCJ, NXPH1, PHF17 et MYB. Des effets du génotype ainsi que des interactions gène-diète ont été observés avec plusieurs polymorphismes nucléotidiques simples (SNPs) des quatre gènes candidats. Ces résultats suggèrent que des variations génétiques à l’intérieur de gènes identifiés par GWAS peuvent expliquer en partie la variabilité de la réponse des TG plasmatiques à une supplémentation en AG n-3 d’origine marine.
Resumo:
In this study, we investigated whether (a) carcinoembryonic antigen (CEA), cytokeratin-20 (CK-20) and guanylyl cyclase C (GCC) are clinically useful markers for the molecular detection of submicroscopic metastases in colorectal cancer (CRC) and (b) whether overexpression of CEA, CK-20 and GCC can be reliably detected in formalin-fixed, paraffin-embedded tissues as well as frozen lymph nodes. We studied 175 frozen lymph nodes and 158 formalin-fixed, paraffin-embedded lymph nodes from 28 cases of CRC. CEA or CK-20 or GCC-specific polymerase chain reaction (PCR) was carried out on mRNA transcripts extracted from the nodal tissues. Ten out of I I Dukes' B CRC cases had detectable CEA and CK-20 while 6 out of 11 Dukes' B CRC cases had detectable GCC. In general, the difference of re-staged cases when comparing frozen and paraffin-embedded samples was marked; the only statistically significant correlation between frozen and paraffin tissue was for the CEA marker. Our results indicated a high incidence (>50%) of detecting micrometastases in histologically-negative lymph nodes at the molecular level. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
El Niño-Southern Oscillation (ENSO) is a major source of global interannual variability, but its response to climate change is uncertain. Paleoclimate records from the Last Glacial Maximum (LGM) provide insight into ENSO behavior when global boundary conditions (ice sheet extent, atmospheric partial pressure of CO2) were different from those today. In this work, we reconstruct LGM temperature variability at equatorial Pacific sites using measurements of individual planktonic foraminifera shells. A deep equatorial thermocline altered the dynamics in the eastern equatorial cold tongue, resulting in reduced ENSO variability during the LGM compared to the Late Holocene. These results suggest that ENSO was not tied directly to the east-west temperature gradient, as previously suggested. Rather, the thermocline of the eastern equatorial Pacific played a decisive role in the ENSO response to LGM climate.
Resumo:
This study directly measured the load acting on the abutment of the osseointegrated implant system of transfemoral amputees during level walking, and studied the variability of the load within and among amputees. Twelve active transfemoral amputees (age: 54±12 years, mass:84.3±16.3 kg, height: 17.8±0.10 m) fitted with an osseointegrated implant for over 1 year participated in the study. The load applied on the abutment was measured during unimpeded, level walking in a straight line using a commercial six-channel transducer mounted between the abutment and the prosthetic knee. The pattern and the magnitude of the three-dimensional forces and moments were revealed. Results showed a low step-to-step variability of each subject, but a high subject-to-subject variability in local extrema of body-weight normalized forces and moments and impulse data. The high subject-to-subject variability suggests that the mechanical design of the implant system should be customized for each individual, or that a fit-all design should take into consideration the highest values of load within a broad range of amputees. It also suggests specific loading regime in rehabilitation training are necessary for a given subject. Thus the loading magnitude and variability demonstrated should be useful in designing an osseointegrated implant system better able to resist mechanical failure and in refining the rehabilitation protocol.
Resumo:
Experimental action potential (AP) recordings in isolated ventricular myoctes display significant temporal beat-to-beat variability in morphology and duration. Furthermore, significant cell-to-cell differences in AP also exist even for isolated cells originating from the same region of the same heart. However, current mathematical models of ventricular AP fail to replicate the temporal and cell-to-cell variability in AP observed experimentally. In this study, we propose a novel mathematical framework for the development of phenomenological AP models capable of capturing cell-to-cell and temporal variabilty in cardiac APs. A novel stochastic phenomenological model of the AP is developed, based on the deterministic Bueno-Orovio/Fentonmodel. Experimental recordings of AP are fit to the model to produce AP models of individual cells from the apex and the base of the guinea-pig ventricles. Our results show that the phenomenological model is able to capture the considerable differences in AP recorded from isolated cells originating from the location. We demonstrate the closeness of fit to the available experimental data which may be achieved using a phenomenological model, and also demonstrate the ability of the stochastic form of the model to capture the observed beat-to-beat variablity in action potential duration.
Resumo:
This thesis advances the knowledge of behavioural economics on the importance of individual characteristics – such as gender, personality or culture – for choices relevant to labour and insurance markets. It does so using economic experiments, survey tools and physiological data, collected in economic laboratories and in the field. More specifically, the thesis includes 5 experimental economic studies investigating individual-specific characteristics (gender, age, personality, cultural background) in decisions influenced by risk attitudes and social preferences. One of these characteristics is the physiological state of decision-makers, measured by heart rate variability. The results show that individual-specific characteristics play an important role for choices affected by social preferences, a finding to a lesser degree observable for risk preferences. This finding is confirmed under revealed incentivised choices and when studying (latent) physiological responses of decision-makers.
Resumo:
Mixtures of single odours were used to explore the receptor response profile across individual antennae of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Seven odours were tested including floral and green-leaf volatiles: phenyl acetaldehyde, benzaldehyde, β-caryophyllene, limonene, α-pinene, 1-hexanol, 3Z-hexenyl acetate. Electroantennograms of responses to paired mixtures of odours showed that there was considerable variation in receptor tuning across the receptor field between individuals. Data from some moth antennae showed no additivity, which indicated a restricted receptor profile. Results from other moth antennae to the same odour mixtures showed a range of partial additivity. This indicated that a wider array of receptor types was present in these moths, with a greater percentage of the receptors tuned exclusively to each odour. Peripheral receptor fields show variation in the spectrum of response within a population (of moths) when exposed to high doses of plant volatiles. This may be related to recorded variation in host choice within moth populations as reported by other authors.
Resumo:
This thesis introduced Bayesian statistics as an analysis technique to isolate resonant frequency information in in-cylinder pressure signals taken from internal combustion engines. Applications of these techniques are relevant to engine design (performance and noise), energy conservation (fuel consumption) and alternative fuel evaluation. The use of Bayesian statistics, over traditional techniques, allowed for a more in-depth investigation into previously difficult to isolate engine parameters on a cycle-by-cycle basis. Specifically, these techniques facilitated the determination of the start of pre-mixed and diffusion combustion and for the in-cylinder temperature profile to be resolved on individual consecutive engine cycles. Dr Bodisco further showed the utility of the Bayesian analysis techniques by applying them to in-cylinder pressure signals taken from a compression ignition engine run with fumigated ethanol.
Resumo:
Genetic and environmental factors influence brain structure and function profoundly. The search for heritable anatomical features and their influencing genes would be accelerated with detailed 3D maps showing the degree to which brain morphometry is genetically determined. As part of an MRI study that will scan 1150 twins, we applied Tensor-Based Morphometry to compute morphometric differences in 23 pairs of identical twins and 23 pairs of same-sex fraternal twins (mean age: 23.8 ± 1.8 SD years). All 92 twins' 3D brain MRI scans were nonlinearly registered to a common space using a Riemannian fluid-based warping approach to compute volumetric differences across subjects. A multi-template method was used to improve volume quantification. Vector fields driving each subject's anatomy onto the common template were analyzed to create maps of local volumetric excesses and deficits relative to the standard template. Using a new structural equation modeling method, we computed the voxelwise proportion of variance in volumes attributable to additive (A) or dominant (D) genetic factors versus shared environmental (C) or unique environmental factors (E). The method was also applied to various anatomical regions of interest (ROIs). As hypothesized, the overall volumes of the brain, basal ganglia, thalamus, and each lobe were under strong genetic control; local white matter volumes were mostly controlled by common environment. After adjusting for individual differences in overall brain scale, genetic influences were still relatively high in the corpus callosum and in early-maturing brain regions such as the occipital lobes, while environmental influences were greater in frontal brain regions that have a more protracted maturational time-course.
Resumo:
We report a circuit technique to measure the on-chip delay of an individual logic gate (both inverting and non-inverting) in its unmodified form using digitally reconfigurable ring oscillator (RO). Solving a system of linear equations with different configuration setting of the RO gives delay of an individual gate. Experimental results from a test chip in 65nm process node show the feasibility of measuring the delay of an individual inverter to within 1pS accuracy. Delay measurements of different nominally identical inverters in close physical proximity show variations of up to 26% indicating the large impact of local or within-die variations.
Resumo:
In this study, the nature of basin-scale hydroclimatic association for Indian subcontinent is investigated. It is found that, the large-scale circulation information from Indian Ocean is also equally important in addition to the El Nino-Southern Oscillation (ENSO), owing to the geographical location of Indian subcontinent. The hydroclimatic association of the variation of monsoon inflow into the Hirakud reservoir in India is investigated using ENSO and EQUatorial INdian Ocean Oscillation (EQUINOO, the atmospheric part of Indian Ocean Dipole mode) as the large-scale circulation information from tropical Pacific Ocean and Indian Ocean regions respectively. Individual associations of ENSO & EQUINOO indices with inflow into Hirakud reservoir are also assessed and found to be weak. However, the association of inflows into Hirakud reservoir with the composite index (CI) of ENSO and EQUINOO is quite strong. Thus, the large-scale circulation information from Indian Ocean is also important apart form the ENSO. The potential of the combined information of ENSO and EQUINOO for predicting the inflows during monsoon is also investigated with promising results. The results of this study will be helpful to water resources managers due to fact that the nature of monsoon inflow is becoming available as an early prediction.
Resumo:
We report the design and characterization of a circuit technique to measure the on-chip delay of an individual logic gate (both inverting and noninverting) in its unmodified form. The test circuit comprises of digitally reconfigurable ring oscillator (RO). The gate under test is embedded in each stage of the ring oscillator. A system of linear equations is then formed with different configuration settings of the RO, relating the individual gate delay to the measured period of the RO, whose solution gives the delay of the individual gates. Experimental results from a test chip in 65-nm process node show the feasibility of measuring the delay of an individual inverter to within 1 ps accuracy. Delay measurements of different nominally identicall inverters in close physical proximity show variations of up to 28% indicating the large impact of local variations. As a demonstration of this technique, we have studied delay variation with poly-pitch, length of diffusion (LOD) and different orientations of layout in silicon. The proposed technique is quite suitable for early process characterization, monitoring mature process in manufacturing and correlating model-to-hardware.