993 resultados para fractal image modeling
Resumo:
We report on the construction of anatomically realistic three-dimensional in-silico breast phantoms with adjustable sizes, shapes and morphologic features. The concept of multiscale spatial resolution is implemented for generating breast tissue images from multiple modalities. Breast epidermal boundary and subcutaneous fat layer is generated by fitting an ellipsoid and 2nd degree polynomials to reconstructive surgical data and ultrasound imaging data. Intraglandular fat is simulated by randomly distributing and orienting adipose ellipsoids within a fibrous region immediately within the dermal layer. Cooper’s ligaments are simulated as fibrous ellipsoidal shells distributed within the subcutaneous fat layer. Individual ductal lobes are simulated following a random binary tree model which is generated based upon probabilistic branching conditions described by ramification matrices, as originally proposed by Bakic et al [3, 4]. The complete ductal structure of the breast is simulated from multiple lobes that extend from the base of the nipple and branch towards the chest wall. As lobe branching progresses, branches are reduced in height and radius and terminal branches are capped with spherical lobular clusters. Biophysical parameters are mapped onto the complete anatomical model and synthetic multimodal images (Mammography, Ultrasound, CT) are generated for phantoms of different adipose percentages (40%, 50%, 60%, and 70%) and are analytically compared with clinical examples. Results demonstrate that the in-silico breast phantom has applications in imaging performance evaluation and, specifically, great utility for solving image registration issues in multimodality imaging.
Resumo:
Neste trabalho será apresentado um método recente de compressão de imagens baseado na teoria dos Sistemas de Funções Iteradas (SFI), designado por Compressão Fractal. Descrever-se-á um modelo contínuo para a compressão fractal sobre o espaço métrico completo Lp, onde será definido um operador de transformação fractal contractivo associado a um SFI local com aplicações. Antes disso, será introduzida a teoria dos SFIs no espaço de Hausdorff ou espaço fractal, a teoria dos SFIs Locais - uma generalização dos SFIs - e dos SFIs no espaço Lp. Fornecida a fundamentação teórica para o método será apresentado detalhadamente o algoritmo de compressão fractal. Serão também descritas algumas estratégias de particionamento necessárias para encontrar o SFI com aplicações, assim como, algumas estratégias para tentar colmatar o maior entrave da compressão fractal: a complexidade de codificação. Esta dissertação assumirá essencialmente um carácter mais teórico e descritivo do método de compressão fractal, e de algumas técnicas, já implementadas, para melhorar a sua eficácia.
Resumo:
International audience
Resumo:
With the progress of computer technology, computers are expected to be more intelligent in the interaction with humans, presenting information according to the user's psychological and physiological characteristics. However, computer users with visual problems may encounter difficulties on the perception of icons, menus, and other graphical information displayed on the screen, limiting the efficiency of their interaction with computers. In this dissertation, a personalized and dynamic image precompensation method was developed to improve the visual performance of the computer users with ocular aberrations. The precompensation was applied on the graphical targets before presenting them on the screen, aiming to counteract the visual blurring caused by the ocular aberration of the user's eye. A complete and systematic modeling approach to describe the retinal image formation of the computer user was presented, taking advantage of modeling tools, such as Zernike polynomials, wavefront aberration, Point Spread Function and Modulation Transfer Function. The ocular aberration of the computer user was originally measured by a wavefront aberrometer, as a reference for the precompensation model. The dynamic precompensation was generated based on the resized aberration, with the real-time pupil diameter monitored. The potential visual benefit of the dynamic precompensation method was explored through software simulation, with the aberration data from a real human subject. An "artificial eye'' experiment was conducted by simulating the human eye with a high-definition camera, providing objective evaluation to the image quality after precompensation. In addition, an empirical evaluation with 20 human participants was also designed and implemented, involving image recognition tests performed under a more realistic viewing environment of computer use. The statistical analysis results of the empirical experiment confirmed the effectiveness of the dynamic precompensation method, by showing significant improvement on the recognition accuracy. The merit and necessity of the dynamic precompensation were also substantiated by comparing it with the static precompensation. The visual benefit of the dynamic precompensation was further confirmed by the subjective assessments collected from the evaluation participants.
Resumo:
Background Plant-soil interaction is central to human food production and ecosystem function. Thus, it is essential to not only understand, but also to develop predictive mathematical models which can be used to assess how climate and soil management practices will affect these interactions. Scope In this paper we review the current developments in structural and chemical imaging of rhizosphere processes within the context of multiscale mathematical image based modeling. We outline areas that need more research and areas which would benefit from more detailed understanding. Conclusions We conclude that the combination of structural and chemical imaging with modeling is an incredibly powerful tool which is fundamental for understanding how plant roots interact with soil. We emphasize the need for more researchers to be attracted to this area that is so fertile for future discoveries. Finally, model building must go hand in hand with experiments. In particular, there is a real need to integrate rhizosphere structural and chemical imaging with modeling for better understanding of the rhizosphere processes leading to models which explicitly account for pore scale processes.
Resumo:
Conceptual interpretation of languages has gathered peak interest in the world of artificial intelligence. The challenge in modeling various complications involved in a language is the main motivation behind our work. Our main focus in this work is to develop conceptual graphical representation for image captions. We have used discourse representation structure to gain semantic information which is further modeled into a graphical structure. The effectiveness of the model is evaluated by a caption based image retrieval system. The image retrieval is performed by computing subgraph based similarity measures. Best retrievals were given an average rating of . ± . out of 4 by a group of 25 human judges. The experiments were performed on a subset of the SBU Captioned Photo Dataset. This purpose of this work is to establish the cognitive sensibility of the approach to caption representations
Resumo:
Conceptual interpretation of languages has gathered peak interest in the world of artificial intelligence. The challenge in modeling various complications involved in a language is the main motivation behind our work. Our main focus in this work is to develop conceptual graphical representation for image captions. We have used discourse representation structure to gain semantic information which is further modeled into a graphical structure. The effectiveness of the model is evaluated by a caption based image retrieval system. The image retrieval is performed by computing subgraph based similarity measures. Best retrievals were given an average rating of . ± . out of 4 by a group of 25 human judges. The experiments were performed on a subset of the SBU Captioned Photo Dataset. This purpose of this work is to establish the cognitive sensibility of the approach to caption representations.
Resumo:
In this study, the transmission-line modeling (TLM) applied to bio-thermal problems was improved by incorporating several novel computational techniques, which include application of graded meshes which resulted in 9 times faster in computational time and uses only a fraction (16%) of the computational resources used by regular meshes in analyzing heat flow through heterogeneous media. Graded meshes, unlike regular meshes, allow heat sources to be modeled in all segments of the mesh. A new boundary condition that considers thermal properties and thus resulting in a more realistic modeling of complex problems is introduced. Also, a new way of calculating an error parameter is introduced. The calculated temperatures between nodes were compared against the results obtained from the literature and agreed within less than 1% difference. It is reasonable, therefore, to conclude that the improved TLM model described herein has great potential in heat transfer of biological systems.
Resumo:
American tegumentary leishmaniasis (ATL) is a disease transmitted to humans by the female sandflies of the genus Lutzomyia. Several factors are involved in the disease transmission cycle. In this work only rainfall and deforestation were considered to assess the variability in the incidence of ATL. In order to reach this goal, monthly recorded data of the incidence of ATL in Orán, Salta, Argentina, were used, in the period 1985-2007. The square root of the relative incidence of ATL and the corresponding variance were formulated as time series, and these data were smoothed by moving averages of 12 and 24 months, respectively. The same procedure was applied to the rainfall data. Typical months, which are April, August, and December, were found and allowed us to describe the dynamical behavior of ATL outbreaks. These results were tested at 95% confidence level. We concluded that the variability of rainfall would not be enough to justify the epidemic outbreaks of ATL in the period 1997-2000, but it consistently explains the situation observed in the years 2002 and 2004. Deforestation activities occurred in this region could explain epidemic peaks observed in both years and also during the entire time of observation except in 2005-2007.
Resumo:
In this work, all publicly-accessible published findings on Alicyclobacillus acidoterrestris heat resistance in fruit beverages as affected by temperature and pH were compiled. Then, study characteristics (protocols, fruit and variety, °Brix, pH, temperature, heating medium, culture medium, inactivation method, strains, etc.) were extracted from the primary studies, and some of them incorporated to a meta-analysis mixed-effects linear model based on the basic Bigelow equation describing the heat resistance parameters of this bacterium. The model estimated mean D* values (time needed for one log reduction at a temperature of 95 °C and a pH of 3.5) of Alicyclobacillus in beverages of different fruits, two different concentration types, with and without bacteriocins, and with and without clarification. The zT (temperature change needed to cause one log reduction in D-values) estimated by the meta-analysis model were compared to those ('observed' zT values) reported in the primary studies, and in all cases they were within the confidence intervals of the model. The model was capable of predicting the heat resistance parameters of Alicyclobacillus in fruit beverages beyond the types available in the meta-analytical data. It is expected that the compilation of the thermal resistance of Alicyclobacillus in fruit beverages, carried out in this study, will be of utility to food quality managers in the determination or validation of the lethality of their current heat treatment processes.
Resumo:
The caffeine solubility in supercritical CO2 was studied by assessing the effects of pressure and temperature on the extraction of green coffee oil (GCO). The Peng-Robinson¹ equation of state was used to correlate the solubility of caffeine with a thermodynamic model and two mixing rules were evaluated: the classical mixing rule of van der Waals with two adjustable parameters (PR-VDW) and a density dependent one, proposed by Mohamed and Holder² with two (PR-MH, two parameters adjusted to the attractive term) and three (PR-MH3 two parameters adjusted to the attractive and one to the repulsive term) adjustable parameters. The best results were obtained with the mixing rule of Mohamed and Holder² with three parameters.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física