977 resultados para estrogen, prostate, androgens, aromatase, development, ERalpha, ERbeta


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Castration is the standard therapy for advanced prostate cancer (PC). Although this treatment is initially effective, tumors invariably relapse as incurable, castration-resistant PC (CRPC). Adaptation of androgen-dependent PC cells to an androgen-depleted environment or selection of pre-existing,CRPC cells have been proposed as mechanisms of CRPC development. Stem cell (SC)-like PC cells have been implicated not only as tumor initiating/maintaining in PC but also as tumor-reinitiating cells in CRPC. Recently, castration-resistant cells expressing the NK3 homeobox 1 (Nkx3-1) (CARNs), the other luminal markers cytokeratin 18 (CK18) and androgen receptor (AR), and possessing SC properties, have been found in castrated mouse prostate and proposed as the cell-of-origin of CRPC. However, the human counterpart of CARNs has not been identified yet. Here, we demonstrate that in the human PC xenograft BM18, preexisting SC-like and neuroendocrine (NE) PC cells are selected by castration and survive as totally quiescent. SClike BM18 cells, displaying the SC markers aldehyde dehydrogenase 1A1 or NANOG, coexpress the luminal markers NKX3-1, CK18, and a low level of AR (ARlow) but not basal or NE markers. These CR luminal SC-like cells, but not NE cells, reinitiate BM18 tumor growth after androgen replacement. The ARlow seems to mediate directly both castration survival and tumor reinitiation. This study identifies for the first time in human PC SC-/CARN-like cells that may represent the cell-of-origin of tumor reinitiation as CRPC. This finding will be fundamental for refining the hierarchy among human PC cancer cells and may have important clinical implications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tissue engineering technologies, which have originally been designed to reconstitute damaged tissue structure and function, can mimic not only tissue regeneration processes but also cancer development and progression. Bioengineered approaches allow cell biologists to develop sophisticated experimentally and physiologically relevant cancer models to recapitulate the complexity of the disease seen in patients. Tissue engineering tools enable three-dimensionality based on the design of biomaterials and scaffolds that re-create the geometry, chemistry, function and signalling milieu of the native tumour microenvironment. Three-dimensional (3D) microenvironments, including cell-derived matrices, biomaterial-based cell culture models and integrated co-cultures with engineered stromal components, are powerful tools to study dynamic processes like proteolytic functions associated with cancer progression, metastasis and resistance to therapeutics. In this review, we discuss how biomimetic strategies can reproduce a humanised niche for human cancer cells, such as peritoneal or bone-like microenvironments, addressing specific aspects of ovarian and prostate cancer progression and therapy response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Estradiol (E-2) is an important promoter of the growth of both eutopic and ectopic endometrium. The findings with regard to the expression and activity of steroidogenic enzymes in endometrium of controls, in endometrium of endometriosis patients and in endometriotic lesions are not consistent. METHODS In this study, we have looked at the mRNA expression and protein levels of a range of steroidogenic enzymes [aromatase, 17 beta-hydroxysteroid dehydrogenases (17 beta-HSD) type 1, 2 and 4, estrogen sulfotransferase (EST) and steroid sulfatase (STS)l in eutopic and ectopic endometrium of patients (n = 14) with deep-infiltrative endometriosis as well as in disease-free endometrium (n = 48) using real-time PCR and immunocytochemistry. In addition, we evaluated their menstrual cycle-related expression patterns, and investigated their steroid responsiveness in explant cultures. RESULTS Aromatase and 17 beta-HSD type 1 mRNA levels were extremely low in normal human endometrium, while mRNAs for types 2 and 4 17 beta-HSD, EST and STS were readily detectable. Only 17 beta-HSD type 2 and EST genes showed sensitivity to progesterone in normal endometrium. Types 1 and 2 17 beta-HSD and STS protein was detected in normal endometrium using new polyclonal antibodies. CONCLUSIONS In endometriosis lesions, the balance is tilted in favor of enzymes producing E2. This is due to a suppression of types 2 and 4 17 beta-HSD, and an increased expression of aromatase and type 1 17 beta-HSD in ectopic endometrium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Androgens regulate biological pathways to promote proliferation, differentiation, and survival of benign and malignant prostate tissue. Androgen receptor (AR) targeted therapies exploit this dependence and are used in advanced prostate cancer to control disease progression. Contemporary treatment regimens involve sequential use of inhibitors of androgen synthesis or AR function. Although targeting the androgen axis has clear therapeutic benefit, its effectiveness is temporary, as prostate tumor cells adapt to survive and grow. The removal of androgens (androgen deprivation) has been shown to activate both epithelial-to-mesenchymal transition (EMT) and neuroendocrine transdifferentiation (NEtD) programs. EMT has established roles in promoting biological phenotypes associated with tumor progression (migration/invasion, tumor cell survival, cancer stem cell-like properties, resistance to radiation and chemotherapy) in multiple human cancer types. NEtD in prostate cancer is associated with resistance to therapy, visceral metastasis, and aggressive disease. Thus, activation of these programs via inhibition of the androgen axis provides a mechanism by which tumor cells can adapt to promote disease recurrence and progression. Brachyury, Axl, MEK, and Aurora kinase A are molecular drivers of these programs, and inhibitors are currently in clinical trials to determine therapeutic applications. Understanding tumor cell plasticity will be important in further defining the rational use of androgen-targeted therapies clinically and provides an opportunity for intervention to prolong survival of men with metastatic prostate cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Limited treatment options for Castration Resistant Prostate Cancer (CRPC) still remain a major challenge. Despite therapeutic advances, most patients with malignant PCa have a poor prognosis. Since the year 2000, we have rapidly expanded our understanding of the molecular mechanisms underlying CRPC and this has led to an unprecedented number of new drug approvals within a short span of time. Recently, four new agents namely Abiraterone Acetate, Enzalutamide, Cabazitaxel, and Radium-223 have been shown to be effective in the post-chemotherapy setting in CRPC. The continued dependency of CRPC on androgen synthesis has seen the development of a number of new anti-androgen therapies, with abiraterone acetate and Enzalutamide being the most promising discoveries. Immunotherapeutic approaches have also found their niche in PCa with Sipuleucel-T shown to be effective in minimally asymptomatic CRPC. Research focussed on bone-targeting therapies has witnessed the arrival of promising new drugs with Denosumab and Radium-223 displaying improved survival of patients with CRPC. This review briefly discusses the findings and limitations from ongoing and completed clinical trials of novel treatments and regimens. In addition, potential mechanisms of therapy resistance and future challenges are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction Hydrogels prepared from poly(ethylene glycol) (PEG) and maleimide-functionalized heparin provide a potential matrix for use in developing three dimensional (3D) models. We have previously demonstrated that these hydrogels support the cultivation of human umbilical vein endothelial cells (HUVECs) (1). We extend this body of work to study the ability to create an extracellular matrix (ECM)-like model to study breast and prostate cancer cell growth in 3D. Also, we investigate the ability to produce a tri-culture mimicking tumour angiogenesis with cancer spheroids, HUVECs and mesenchymal stem cells (MSC). Materials and Methods The breast cancer cell lines, MCF-7 and MDA-MB-231, and prostate cancer cell lines, LNCaP and PC3, were seeded into starPEG-heparin hydrogels and grown for 14 Days to analyse the effects of varying hydrogel stiffness on spheroid development. Resulting hydrogel constructs were analyzed via Alamar Blue assays, light microscopy, and immunofluorescence staining for cytokeratin 8/18, Ki67 and E-Cadherin. Cancer cell lines were then pre-grown in hydrogels for 5-7 days and then re-seeded into starPEG-heparin hydrogels functionalised with RGD, SDF-1, bFGF and VEGF as spheroids with HUVECs and MSC and grown for 14 days as a tri-culture in Endothelial Cell Growth Medium (ECGM; Promocell). Cell lines were also seeded as a single cell suspension into the functionalised tri-culture system. Cultures were fixed in 4% paraformaldehyde and analysed via immunostaining for Von Willebrand Factor and CD31, as well as the above mentioned markers, and observed using confocal microscopy. Results Cultures prepared in MMP-cleavable starPEG-heparin hydrogels display spheroid formation in contrast to adherent growth on tissue culture plastic. Small differences were visualised in cancer spheroid growth between different gel stiffness across the range of cell lines. Cancer cell lines were able to be co-cultivated with HUVECs and MSC. HUVEC tube formation and cancer line spheroid formation occured after 3-4 days. Interaction was visualised between tumours and HUVECs via confocal microscopy. Slightly increased interaction was seen between cancer tumours and micro-vascular tubes when seeded as single cells compared with the pre-formed spheroid approach. Further studies intend to utilise cytokine gradients to further optimise the ECM environment of in situ tumour angiogenesis. Discussion and Conclusions Our results confirm the suitability of hydrogels constructed from starPEG-heparin for HUVECs and MSC co-cultivation with cancer cell lines to study cell-cell and cell-matrix interactions in a 3D environment. This represents a step forward in the development of 3D culture models to study the pathomechanisms of breast and prostate cancer. References 1. Tsurkan MV, Chwalek K, Prokoph S, Zieris A, Levental KR, Freudenberg U, Werner C. Advanced Materials. 25, 2606-10, 2013. Disclosures The authors declare no conflicts of interest

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite monolayer cultures being widely used for cancer drug development and testing, 2D cultures tend to be hypersensitive to chemotherapy and are relatively poor predictors of whether a drug will provide clinical benefit. Whilst generally more complicated, three dimensional (3D) culture systems often better recapitulate true cancer architecture and provide a more accurate drug response. As a step towards making 3D cancer cultures more accessible, we have developed a microwell platform and surface modification protocol to enable high throughput manufacture of 3D cancer aggregates. Herein we use this novel system to characterize prostate cancer cell microaggregates, including growth kinetics and drug sensitivity. Our results indicate that prostate cancer cells are viable in this system, however some non-cancerous prostate cell lines are not. This system allows us to consistently control for the presence or absence of an apoptotic core in the 3D cancer microaggregates. Similar to tumor tissues, the 3D microaggregates display poor polarity. Critically the response of 3D microaggregates to the chemotherapeutic drug, docetaxel, is more consistent with in vivo results than the equivalent 2D controls. Cumulatively, our results demonstrate that these prostate cancer microaggregates better recapitulate the morphology of prostate tumors compared to 2D and can be used for high-throughput drug testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This project was a step forward in discovering the potential role of intestinal cell kinase in prostate cancer development. Intestinal cell kinase was shown to be upregulated in prostate cancer cells and altered expression led to changes in key cell survival proteins. This study used in vitro experiments to monitor changes in cell growth, protein and RNA expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer is the most commonly diagnosed malignancy in men and advanced disease is incurable. Model systems are a fundamental tool for research and many in vitro models of prostate cancer use cancer cell lines in monoculture. Although these have yielded significant insight they are inherently limited by virtue of their two-dimensional (2D) growth and inability to include the influence of tumour microenvironment. These major limitations can be overcome with the development of newer systems that more faithfully recreate and mimic the complex in vivo multi-cellular, three-dimensional (3D) microenvironment. This article presents the current state of in vitro models for prostate cancer, with particular emphasis on 3D systems and the challenges that remain before their potential to advance our understanding of prostate disease and aid in the development and testing of new therapeutic agents can be realised.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR pathway is one of the most frequently activated signaling pathways in prostate cancer cells, and loss of the tumor suppressor PTEN and amplification of PIK3CA are the two most commonly detected mechanisms for the activation of these pathways. Aberrant activation of PI3K/Akt/mTOR has been implicated not only in the survival and metastasis of prostate cancer cells but also in the development of drug resistance. As such, selective inactivation of this pathway may provide opportunities to attack prostate cancer from all fronts. However, while preclinical studies examining specific inhibitors of PI3K or mTOR have yielded promising results, the evidence from clinical trials is less convincing. Emerging evidence from the analyses of some solid tumors suggests that a class of dual PI3K/mTOR inhibitors, which bind to and inactivate both PI3K and mTOR, may achieve better anti-cancer outcomes. In this review, we will summarize the mechanisms of action of these inhibitors, their effectiveness when used alone or in combination with other chemotherapeutic compounds, and their potential to serve as the next generation therapies for prostate cancer patients, particularly those who are resistant to the frontline chemotherapeutic drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostate cancer frequently metastasizes to bone, which becomes incurable; yet how cancer cells manage to migrate and grow inside the bone remains unknown. In this study I have discovered that both bone and fat cells within the bone marrow actively promote the survival and expansion of prostate cancer cells, and have subsequently developed approaches that can effectively inhibit these processes. Therefore, my work offers opportunities for the development of new prognostic and therapeutic approaches against metastatic prostate cancer and have the potential for improving the treatment outcome of the patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context: Whether the action of estrogen in skeletal development depends on estrogen receptor α as encoded by the ESR1 gene is unknown. Objectives: The aim of this study was to establish whether the gain in area-adjusted bone mineral content (ABMC) in girls occurs in late puberty and to examine whether the magnitude of this gain is related to ESR1 polymorphisms. Design: We conducted a cross-sectional analysis. Setting: The study involved the Avon Longitudinal Study of Parents and Children (ALSPAC), a population-based prospective study. Participants: Participants included 3097 11-yr-olds with DNA samples, dual x-ray absorptiometry measurements, and pubertal stage information. Outcomes: Outcome measures included separate prespecified analyses in boys and girls of the relationship between ABMC derived from total body dual x-ray absorptiometry scans and Tanner stage and of the interaction between ABMC, Tanner stage, and ESR1 polymorphisms. Results: Total body less head and spinal ABMC were higher in girls in Tanner stages 4 and 5, compared with those in Tanner stages 1, 2, and 3. In contrast, height increased throughout puberty. No differences were observed in ABMC according to Tanner stage in boys. For rs2234693 (PvuII) and rs9340799 (XbaI) polymorphisms, differences in spinal ABMC in late puberty were 2-fold greater in girls who were homozygous for the C and G alleles, respectively (P = 0.001). For rs7757956, the difference in total body less head ABMC in late puberty was 50% less in individuals homozygous or heterozygous for the A allele (P = 0.006). Conclusions: Gains in ABMC in late pubertal girls are strongly associated with ESR1 polymorphisms, suggesting that estrogen contributes to this process via an estrogen receptor α-dependent pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emerging evidence has shown that the extracellular vesicles (EVs) regulate various biological processes and can control cell proliferation and survival, as well as being involved in normal cell development and diseases such as cancers. In cancer treatment, development of acquired drug resistance phenotype is a serious issue. Recently it has been shown that the presence of multidrug resistance proteins such as Pgp-1 and enrichment of the lipid ceramide in EVs could have a role in mediating drug resistance. EVs could also mediate multidrug resistance through uptake of drugs in vesicles and thus limit the bioavailability of drugs to treat cancer cells. In this review, we discussed the emerging evidence of the role EVs play in mediating drug resistance in cancers and in particular the role of EVs mediating drug resistance in advanced prostate cancer. The role of EV-associated multidrug resistance proteins, miRNA, mRNA, and lipid as well as the potential interaction(s) among these factors was probed. Lastly, we provide an overview of the current available treatments for advanced prostate cancer, considering where EVs may mediate the development of resistance against these drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simultaneous expression of highly homologous RLN1 and RLN2 genes in prostate impairs their accurate delineation. We used PacBio SMRT sequencing and RNA-Seq in LNCaP cells in order to dissect the expression of RLN1 and RLN2 variants. We identified a novel fusion transcript comprising the RLN1 and RLN2 genes and found evidence of its expression in the normal and prostate cancer tissues. The RLN1-RLN2 fusion putatively encodes RLN2 isoform with the deleted secretory signal peptide. The identification of the fusion transcript provided information to determine unique RLN1-RLN2 fusion and RLN1 regions. The RLN1-RLN2 fusion was co-expressed with RLN1 in LNCaP cells, but the two gene products were inversely regulated by androgens. We showed that RLN1 is underrepresented in common PCa cell lines in comparison to normal and PCa tissue. The current study brings a highly relevant update to the relaxin field, and will encourage further studies of RLN1 and RLN2 in PCa and broader.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cancer is fundamentally a genomic disease caused by mutations or rearrangements in the DNA or epigenetic machinery of a patient. An emerging field in cancer treatment targets key aberrations arising from the mutational landscape of an individual patient’s disease rather than employing a cancer-wide cytotoxic therapy approach. In prostate cancer in particular, where there is an observed variation in response to standard treatments between patients with disease of a similar pathological stage and grade, mutationdirected treatment may grow to be a viable tool for clinicians to tailor more effective treatments. This review will describe a number of mutations across multiple forms of cancer that have been successfully antagonised by targeted therapeutics including their identification, the development of targeted compounds to combat them and the development of resistance to these therapies. This review will continue to examine these same mutations in the treatment and management of prostate cancer; the prevalence of targetable mutations in prostate cancer, recent clinical trials of targeted-agents and the potential or limitations for their use.