928 resultados para contour enhancement
Resumo:
A recent modelling study has shown that precipitation and runoff over land would increase when the reflectivity of marine clouds is increased to counter global warming. This implies that large scale albedo enhancement over land could lead to a decrease in runoff over land. In this study, we perform simulations using NCAR CAM3.1 that have implications for Solar Radiation Management geoengineering schemes that increase the albedo over land. We find that an increase in reflectivity over land that mitigates the global mean warming from a doubling of CO2 leads to a large residual warming in the southern hemisphere and cooling in the northern hemisphere since most of the land is located in northern hemisphere. Precipitation and runoff over land decrease by 13.4 and 22.3%, respectively, because of a large residual sinking motion over land triggered by albedo enhancement over land. Soil water content also declines when albedo over land is enhanced. The simulated magnitude of hydrological changes over land are much larger when compared to changes over oceans in the recent marine cloud albedo enhancement study since the radiative forcing over land needed (-8.2 W m(-2)) to counter global mean radiative forcing from a doubling of CO2 (3.3 W m(-2)) is approximately twice the forcing needed over the oceans (-4.2 W m(-2)). Our results imply that albedo enhancement over oceans produce climates closer to the unperturbed climate state than do albedo changes on land when the consequences on land hydrology are considered. Our study also has important implications for any intentional or unintentional large scale changes in land surface albedo such as deforestation/afforestation/reforestation, air pollution, and desert and urban albedo modification.
Resumo:
We describe a hybrid synthetic protocol, the solvated metal atom dispersion (SMAD) method, for the synthesis and stabilization of monodisperse amorphous cobalt nanoparticles. By employing an optimized ratio of a weakly coordinating solvent and a capping agent monodisperse colloidal cobalt nanoparticles (2 +/- 0.5 nm) have been prepared by the SMAD method. However, the as-prepared samples were found to be oxidatively unstable which was elucidated by their magnetic studies. Oxidative stability in our case was achieved via a pyrolysis process that led to the decomposition of the organic solvent and the capping agent resulting in the formation of carbon encapsulated cobalt nanoparticles which was confirmed by Raman spectroscopy. Controlled annealing at different temperatures led to the phase transformation of metallic cobalt from the hcp to fcc phase. The magnetic behaviour varies with the phase and the particle size; especially, the coercivity of nanoparticles exhibited strong dependence on the phase transformation of cobalt. The high saturation magnetization close to that of the bulk value was achieved in the case of the annealed samples. In addition to detailed structural and morphological characterization, the results of thermal and magnetic studies are also presented.
Resumo:
The Reeb graph of a scalar function tracks the evolution of the topology of its level sets. This paper describes a fast algorithm to compute the Reeb graph of a piecewise-linear (PL) function defined over manifolds and non-manifolds. The key idea in the proposed approach is to maximally leverage the efficient contour tree algorithm to compute the Reeb graph. The algorithm proceeds by dividing the input into a set of subvolumes that have loop-free Reeb graphs using the join tree of the scalar function and computes the Reeb graph by combining the contour trees of all the subvolumes. Since the key ingredient of this method is a series of union-find operations, the algorithm is fast in practice. Experimental results demonstrate that it outperforms current generic algorithms by a factor of up to two orders of magnitude, and has a performance on par with algorithms that are catered to restricted classes of input. The algorithm also extends to handle large data that do not fit in memory.
Resumo:
With the advances of techniques for RCS reduction, it has become practical to develop aircraft which are invisible to modern day radars. In order to detect such low visible targets it is necessary to explore other phenomenon that contributes to the scattering of incident electromagnetic wave. It is well known from the developments from the clear air scattering using RASS induced acoustic wave could be used to create dielectric constant fluctuation. The scattering from these fluctuations rather than from the aircraft have been observed to enhance the RCS of clear air, under the condition when the incident EM wave is half of the acoustic wave, the condition of Bragg scattering would be met and RCS would be enhanced. For detecting low visibility targets which are at significant distance away from the main radar, inducement of EM fluctuation from acoustic source collocated with the acoustic source is infeasible. However the flow past aircraft produces acoustic disturbances around the aircraft can be exploited to detect low visibility targets. In this paper numerical simulation for RCS enhancement due to acoustic disturbances is presented. In effect, this requires the solution of scattering from 3D inhomogeneous complex shaped bodies. In this volume surface integral equation (VSIE) is used to compute the RCS from fluctuation introduced through the acoustic disturbances. Though the technique developed can be used to study the scattering from radars of any shape and acoustic disturbances of any shape. For illustrative condition, enhancement due to the Bragg scattering are shown to improve the RCS by nearly 30dB, for air synthetic sinusoidal acoustic variation profile for a spherical scattering volume
Resumo:
Western Blot analysis is an analytical technique used in Molecular Biology, Biochemistry, Immunogenetics and other Molecular Biology studies to separate proteins by electrophoresis. The procedure results in images containing nearly rectangular-shaped blots. In this paper, we address the problem of quantitation of the blots using automated image processing techniques. We formulate a special active contour (or snake) called Oblong, which locks on to rectangular shaped objects. Oblongs depend on five free parameters, which is also the minimum number of parameters required for a unique characterization. Unlike many snake formulations, Oblongs do not require explicit gradient computations and therefore the optimization is carried out fast. The performance of Oblongs is assessed on synthesized data and Western Blot Analysis images.
Resumo:
We address the problem of speech enhancement in real-world noisy scenarios. We propose to solve the problem in two stages, the first comprising a generalized spectral subtraction technique, followed by a sequence of perceptually-motivated post-processing algorithms. The role of the post-processing algorithms is to compensate for the effects of noise as well as to suppress any artifacts created by the first-stage processing. The key post-processing mechanisms are aimed at suppressing musical noise and to enhance the formant structure of voiced speech as well as to denoise the linear-prediction residual. The parameter values in the techniques are fixed optimally by experimentally evaluating the enhancement performance as a function of the parameters. We used the Carnegie-Mellon university Arctic database for our experiments. We considered three real-world noise types: fan noise, car noise, and motorbike noise. The enhancement performance was evaluated by conducting listening experiments on 12 subjects. The listeners reported a clear improvement (MOS improvement of 0.5 on an average) over the noisy signal in the perceived quality (increase in the mean-opinion score (MOS)) for positive signal-to-noise-ratios (SNRs). For negative SNRs, however, the improvement was found to be marginal.
Resumo:
The goal of speech enhancement algorithms is to provide an estimate of clean speech starting from noisy observations. The often-employed cost function is the mean square error (MSE). However, the MSE can never be computed in practice. Therefore, it becomes necessary to find practical alternatives to the MSE. In image denoising problems, the cost function (also referred to as risk) is often replaced by an unbiased estimator. Motivated by this approach, we reformulate the problem of speech enhancement from the perspective of risk minimization. Some recent contributions in risk estimation have employed Stein's unbiased risk estimator (SURE) together with a parametric denoising function, which is a linear expansion of threshold/bases (LET). We show that the first-order case of SURE-LET results in a Wiener-filter type solution if the denoising function is made frequency-dependent. We also provide enhancement results obtained with both techniques and characterize the improvement by means of local as well as global SNR calculations.
Resumo:
We address the problem of speech enhancement using a risk- estimation approach. In particular, we propose the use the Stein’s unbiased risk estimator (SURE) for solving the problem. The need for a suitable finite-sample risk estimator arises because the actual risks invariably depend on the unknown ground truth. We consider the popular mean-squared error (MSE) criterion first, and then compare it against the perceptually-motivated Itakura-Saito (IS) distortion, by deriving unbiased estimators of the corresponding risks. We use a generalized SURE (GSURE) development, recently proposed by Eldar for MSE. We consider dependent observation models from the exponential family with an additive noise model,and derive an unbiased estimator for the risk corresponding to the IS distortion, which is non-quadratic. This serves to address the speech enhancement problem in a more general setting. Experimental results illustrate that the IS metric is efficient in suppressing musical noise, which affects the MSE-enhanced speech. However, in terms of global signal-to-noise ratio (SNR), the minimum MSE solution gives better results.
Resumo:
Previous studies on a single-cavity, compact trapped vortex combustor concept showed good flame stability for a wide range of flow conditions. However, achieving good mixing between cavity products and mainstream flow was still a major challenge. In the present study, a passive mixing enhancement strategy of using inclined struts along with a flow guide vane is presented and experimentally tested at atmospheric pressure conditions. Results show excellent mixing and consequently low values of the combustor exit pattern factor in the range of 0.1 and small flame lengths (57 times the main-duct depth). The pressure drop is small in the range of 0.35%, and NOx levels of the order of 12ppm are achieved. The flame stability is excellent, and combustion efficiency is reasonable in the range of 96%. The effectiveness of the proposed strategy is explained on the basis of in-situ OH chemiluminescence images and prior numerical simulations of the resulting complex flow field. The flow guide vane is observed to lead to a counterclockwise cavity vortex, which is conducive to the rise of cavity combustion products along the inclined struts and subsequent mixing with the mainstream flow.
Resumo:
We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is similar to 3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.
Resumo:
Four ``V'' shaped 1,8-naphthalimides (1-4) have been synthesized and their fluorescence quantum-yields correlated to their molecular flexibility. The correlation was used for detection of Hg(II) via a chemodosimetric approach. 4 was found to be an AIE active molecule with the formation of fluorescent nanoaggregates.
Resumo:
Among various biologically compatible materials, hydroxyapatite (HA) has excellent bioactivity/osteointegration properties and therefore has been extensively investigated for biomedical applications. However, its inferior fracture toughness limits the wider applications of monolithic HA as a load-bearing implant. To this end, HA-based biocomposites have been developed to improve their mechanical properties (toughness and strength) without compromising biocompatibility. Despite significant efforts over last few decades, the toughness of HA-based composites could not be enhanced beyond 1.5-2 MPa m(1/2), even when measured using indentation techniques. In this perspective, the present work demonstrates how spark plasma sintering can be effectively utilized to develop hydroxyapatite titanium (HA-Ti) composites with varying amounts of Ti (5, 10 and 20 wt.%) with extremely high single edge V-notch beam fracture toughness (4-5 MPa m(1/2)) along with a good combination of elastic modulus and flexural strength. Despite predominant retention of HA and Ti, the combination of critical analysis of X-ray diffraction and transmission electron microscopy investigation confirmed the formation of the CaTi4(PO4)(6) phase with nanoscale morphology at the HA/Ti interface and the formation of such a phase has been discussed in reference to possible sintering reactions. The variations in the measured fracture toughness and work of fracture with Ti addition to the HA matrix were further rationalized using the analytical models of crack bridging as well as on the basis of the additional contribution from crack deflection. The present work opens up the opportunity to further enhance the toughness beyond 5 MPa m(1/2) by microstructural designing with the desired combination of toughening phases. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Nanocomposite solid polymer electrolytes (NCSPEs) with conducting species other than Li ions are being investigated for solid-state battery applications. Pristine solid polymer electrolytes (SPEs) do not show ionic conductivity suitable for batteries. Addition of inert fillers to SPEs is known to enhance the ionic conductivity. In this paper, we present the role of silica nanoparticles in enhancing the ionic conductivity in NCSPEs with sodium as conducting species. Sodium bromide is complexed with the host polyethylene glycol polymer by solution cast method and silica nanoparticles (SiO2, average particle size 7 nm) are incorporated into the complex in small amounts. The composites are characterized by powder XRD and IR spectroscopy. Conductivity measurements are undertaken as a function of concentration of salt and also as a function of temperature using impedance spectroscopy. Addition of silica nanoparticles shows an enhancement in conductivity by 1-2 orders of magnitude. The results are discussed in terms of interaction of nanoparticles with the nonconducting anions.
Resumo:
In this paper, we report a breakthrough result on the difficult task of segmentation and recognition of coloured text from the word image dataset of ICDAR robust reading competition challenge 2: reading text in scene images. We split the word image into individual colour, gray and lightness planes and enhance the contrast of each of these planes independently by a power-law transform. The discrimination factor of each plane is computed as the maximum between-class variance used in Otsu thresholding. The plane that has maximum discrimination factor is selected for segmentation. The trial version of Omnipage OCR is then used on the binarized words for recognition. Our recognition results on ICDAR 2011 and ICDAR 2003 word datasets are compared with those reported in the literature. As baseline, the images binarized by simple global and local thresholding techniques were also recognized. The word recognition rate obtained by our non-linear enhancement and selection of plance method is 72.8% and 66.2% for ICDAR 2011 and 2003 word datasets, respectively. We have created ground-truth for each image at the pixel level to benchmark these datasets using a toolkit developed by us. The recognition rate of benchmarked images is 86.7% and 83.9% for ICDAR 2011 and 2003 datasets, respectively.
Resumo:
This work describes the base triggered enhancement of first hyperpolarizability of a tautomeric organic molecule, namely, benzoylacetanilide (BA). We have used the hyper-Rayleigh scattering technique to measure the first hyperpolarizability (beta) of BA which exists in the pure keto form in water and as a keto-enol tautomer in ethanol. Its anion exists in equilibrium with the keto and enol forms at pH 11 in aqueous solution. The beta value of the anion form is 709 X 10(-30) esu, whereas that of the enol is 232 x 10(-3) esu and of the keto is 88 X 10(-30) esu. There is an enhancement of beta by similar to 8 times for the anion and similar to 3 times for the enol compared to the keto form. All these are achieved by altering the equilibrium between the three forms of BA by simple means. MP2 calculations reproduce the experimental trend, but the computed beta values are much lower than the measured values. DFT calculations with the standard B3LYP functional could not predict the right order in the beta values. The difference between experimental and calculated values is, perhaps, due to the fact that electron correlation effects are important in computing optical nonlinearities of large organic molecules and MP2 and B3LYP calculations done here for different forms of BA could not account for such effects adequately.