215 resultados para bSiO2


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed size-specific dry mass, sinking velocity, and apparent diffusivity in field-sampled marine snow, laboratory-made aggregates formed by diatoms or coccolithophorids, and small and large zooplankton fecal pellets with naturally varying content of ballast materials. Apparent diffusivity was measured directly inside aggregates and large (millimeter-long) fecal pellets using microsensors. Large fecal pellets, collected in the coastal upwelling off Cape Blanc, Mauritania, showed the highest volume-specific dry mass and sinking velocities because of a high content of opal, carbonate, and lithogenic material (mostly Saharan dust), which together comprised ~80% of the dry mass. The average solid matter density within these large fecal pellets was 1.7 g cm**-3, whereas their excess density was 0.25 ± 0.07 g cm**-3. Volume-specific dry mass of all sources of aggregates and fecal pellets ranged from 3.8 to 960 µg mm**-3, and average sinking velocities varied between 51 and 732 m d**-1. Porosity was >0.43 and >0.96 within fecal pellets and phytoplankton-derived aggregates, respectively. Averaged values of apparent diffusivity of gases within large fecal pellets and aggregates were 0.74 and 0.95 times that of the free diffusion coefficient in sea water, respectively. Ballast increases sinking velocity and, thus, also potential O2 fluxes to sedimenting aggregates and fecal pellets. Hence, ballast minerals limit the residence time of aggregates in the water column by increasing sinking velocity, but apparent diffusivity and potential oxygen supply within aggregates are high, whereby a large fraction of labile organic carbon can be respired during sedimentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluffy layer was sampled repeatedly during nine expeditions between October 1996 and December 1998 at four stations situated along a S-N-transect from the Oder Estuary to the Arkona Basin. Geochemical and mineralogical analyses of the fluff show regional differences (trends) in composition, attributed to provenance and to hydrographical conditions along their transport pathways. Temporal variability is very high at the shallow water station of the estuary, and decreases towards the deeper stations in the north. In the shallow water area, intensive resuspension of the fluff due to wind-driven waves and currents leads to an average residence time of only one to two days. Near-bottom lateral transport of the fluff is the main process that transfers the fine grained material, containing both nutrients and contaminants, from the coastal zone into the deeper basins of the Baltic Sea. Seasonal effects (e.g. biogenic production in relation to trace metal variation) are observed at the Tromper Wiek station, where the residence time of the fluffy material is in the scale of seasons. Thus, the fluffy layer offers suitable material for environmental monitoring programs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reconstruction of nutrient concentrations in the deep Southern Ocean has produced conflicting results. The cadmium/calcium (Cd/Ca) data set suggests little change in nutrient concentrations during the last glacial period, whereas the carbon isotope data set suggests that nutrient concentrations were higher. We determined the silicon isotope composition of sponge spicules from the Atlantic and Pacific sectors of the Southern Ocean and found higher silicic acid concentrations in the Pacific sector during the last glacial period. We propose that this increase results from changes in the stoichiometric uptake of silicic acid relative to nitrate and phosphate by diatoms, thus facilitating a redistribution of nutrients across the Pacific and Southern Oceans. Our results are consistent with the global Cd/Ca data set and support the silicic acid leakage hypothesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present biogenic opal flux records from two deep-sea sites in the Scotia Sea (MD07-3133 and MD07-3134) at decadal-scale resolution, covering the last glacial cycle. Besides conventional and time-consuming biogenic opal measuring methods, we introduce new biogenic opal estimation methods derived from sediment colour b*, wet bulk density, Si/Ti-count ratio, and Fourier transform infrared spectroscopy (FTIRS). All methods capture the biogenic opal amplitude, however, FTIRS - a novel method for marine sediment - yields the most reliable results. 230Th normalization data show strong differences in sediment focusing with intensified sediment focusing during glacial times. At MD07-3134 230Th normalized biogenic opal fluxes vary between 0.2 and 2.5 g/cm2/kyr. Our biogenic opal flux records indicate bioproductivity changes in the Southern Ocean, strongly influenced by sea ice distribution and also summer sea surface temperature changes. South of the Antarctic Polar Front, lowest bioproductivity occurred during the Last Glacial Maximum when upwelling of mid-depth water was reduced and sea ice cover intensified. Around 17 ka, bioproductivity increased abruptly, corresponding to rising atmospheric CO2 contents and decreasing seasonal sea ice coverage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We constructed biogenic mass accumulation rate (MAR) time series for eastern Pacific core transects across the equator at ~105° and ~85°W and along the equator from 80° to 140°W. We used empirical orthogonal function (EOF) analysis to extract spatially coherent patterns of CaCO3 deposition for the last 150 kyr. EOF mode 1 (51% variance) is a CaCO3 MAR spike centered in marine oxygen isotope stage 2 (MIS 2) found under the South Equatorial Current. EOF mode 2 (19% of variance) is high north of the equator. EOF mode 3 (9% of variance) is an east-west mode centered along the North Equatorial Counter Current. The MIS 2 CaCO3 spike is the largest event in the eastern Pacific for the last 150 kyr: CaCO3 MARs are 2-3 times higher at 18 ka than elsewhere in the record, including MIS 6. It is caused by high CaCO3 production rather than minimal dissolution. EOF 2, while it resembles deep water flow patterns, nevertheless, shows coherence to Corg deposition and is probably also driven by CaCO3 production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Die Rekonstruktion der glaziomarinen Sedimentationsprozesse am antarktischen Kontinentalrand des westlichen Bellingshausenmeeres erfolgte durch die sedimentologische Auswertung eines 962 cm langen Schwerelotkernes aus 3594 m Wassertiefe. Der Kern wurde während des Fahrtabschnittes ANT-XI/3 mit dem FS "Polarstern" vom Scheitel einer Sediment- "Drift" gezogen. An dem Sedimentkern wurde eine lithologische Beschreibung, sowie sedimentologische Untersuchungen und sedimentphysikalische Messungen durchgeführt. Anhand der Ergebnisse konnten signifikante Änderungen in der Zusammensetzung und Struktur der Sedimente erkannt, und drei Faziestypen unterschieden werden. Die Faziestypen charakterisieren jeweils glaziale oder interglaziale Zeiträume. Der größte Teil der Sedimentabfolge gehört der Laminitfazies an. Dabei handelt es sich um feinlaminierte Sedimentabschnitte, die vorwiegend aus feinkörnigen, terrigenen Komponenten zusammengesetzt sind. In die feinlaminierten Abschnitte sind vereinzelte, wenige Milimeter bis Zentimeter mächtige Siltlagen eingeschaltet. Die biogenen Anteile sind gering, Anzeichen für Bodenleben fehlen völlig. Die Manganfazies wird von authigen gebildeten Mangankonkretionen dominiert, die jeweils diskrete Lagen bilden. Dabei handelt es sich zum einen um Mikromanganknollen und -krusten und zum andern um manganhaltige Gangfüllungen. Biogene und terrigene Anteile sind in diesem Faziestyp unbedeutend. Die Biogenfazies ist von strukturlosen und stark bioturbierten Sedimenten gekennzeichnet. In diesen Sedimentabschnitten ist der hohe Anteil an Eisfracht (IRD) und die erhöhten Gehalte an Kalziumkarbonat und Opal in der Sandfraktion markant. Die stratigraphische Einordnung des Sedimentkernes erfolgte über die von Grobe & Mackensen (1992) entwickelte Lithostratigraphie, mit deren Einheiten die Faziestypen des Sedimentkernes korreliert werden konnten. Dabei ergaben sich zwei mögliche Altersmodelle und ein Basisalter von ca. 250.000 Jahren. Anhand der stratigraphischen Fixpunkte wurden Sedimentationsraten des Gesamtsedimentes und Akkumulationsraten des Kalziumkarbonates, des Biogenopals und des organisch gebundenen Kohlenstoffes berechnet. Dabei wurde gezeigt, daß lediglich das Kalziumkarbonat und der Biogenopal als Anzeiger für biologische Produktion dienen können, wobei Lösungsprozesse in der Wassersäule und im Sediment eine große Rolle spielen. Der Gehalt an organisch gebundenem Kohlenstoff ist in dem Sedimentkern nur erhaltungsbedingt zu erklären. Die Sedimentationsprozesse der einzelnen Faziestypen sind von den Eisverhältnissen, der biologischen Produktion, dem gravitativen Transport und der Umlagerung durch Meeresströmungen abhängig. Die Auswirkung der einzelnen Faktoren ist jeweils unterschiedlich ausgeprägt und wirkt sich spezifisch auf die einzelnen Parameter aus. In den Glazialen hatte ein Vorstoß des Schelfeises über die Schelfkante zur Anlieferung großer Sedimentmassen geführt, die über gravitativen Transport den Kontinentalhang hinunter transportiert wurden. Die Feinfracht wurde über parallel zum Kontinentalhang laufende Konturströme westwärts transportiert und in der Larninitfazies der Driftkörper abgelagert. Am Ende der Glaziale kam es zur Sedimentation der Manganfazies. Die geringen Sedimentationsraten am Kamm der Sedimentdrift kamen aufgrund reduzierter Intensität der Konturströme und fehlender Umlagerung von Schelfsedimenten in Folge rückschreitender Schelfeisrnassen zustande. In den Interglazialen kam es durch den aufsteigenden Meeresspiegel zum Aufschwimmen des Schelfeises. Der damit verbundene Abbau der Eisrnassen über dem Schelf, hatte eine hohe Sedimentation von IRD zur Folge. Mit fortschreitendem Interglazial kam es in Zeiten nur saisonaler Meereisbedeckung zu verstärkter biologischer Produktion und zur Sedimentation biogenen Materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment cores collected from the Eastern Equatorial Pacific Ocean display a clear positive second-order relationship between wet bulk density (WBD) and carbonate content. This has long interested the paleoceanography community because detailed Gamma Ray Attenuation Porosity Evaluator (GRAPE) measurements, which approximate WBD, might be used to determine records of carbonate content at very high temporal resolution. Although general causes for the relationship are known, they have not been presented and discussed systematically on the basis of first principles. In this study, we measure the mass and carbonate content of 50 sediment samples with known WBD from Site U1338, before and after rinsing with de-ionized water; we also determine the mass related proportion of coarse (> 63 µm) material. Samples exhibit clear relationships between WBD, carbonate content, mass loss upon rinsing, and grain size. We develop a series of mathematical expressions to describe these relationships, and solve them numerically. As noted by previous workers, the second-order relationship between WBD and carbonate content results from the mixing of biogenic carbonate and biogenic silica, which have different grain densities and different porosities. However, at high carbonate content, a wide range in WBD occurs because samples with greater amounts of coarse carbonate have higher porosity. Moreover compaction impacts carbonate particles more than biogenic silica particles. As such, a single two-component equation cannot be used to determine carbonate content accurately across depth intervals where both the porosity and type of carbonate vary. Instead, the WBD-carbonate relationship is described by an infinite series of curves, each which represents mixing of multiple sediment components with different densities and porosities. Dissolved ions also precipitate from pore space during sample drying, which adds mass to the sediment. Without rinsing samples, simple empirical relationships between WBD and carbonate content are further skewed by salt dilution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CTD and nephelometric sounding data are considered along with parameters of the near-bottom currents and particulate fluxes measured by a subsurface mooring station in the northern part of the Bear Island Trough. It is shown that the near-bottom current is characterized by highly variable parameters, while distribution of suspended particulate matter demonstrates surface and bottom maxima. Horizontal and vertical fluxes of sedimentary material in the nepheloid layer are studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Southern Ocean (SO) plays a key role in modulating atmospheric CO2 via physical and biological processes. However, over much of the SO, biological activity is iron-limited. New in situ data from the Antarctic zone south of Africa in a region centered at -20°E - 25°E reveal a previously overlooked region of high primary production, comparable in size to the northwest African upwelling region. Here, sea ice together with enclosed icebergs is channeled by prevailing winds to the eastern boundary of the Weddell Gyre, where a sharp transition to warmer waters causes melting. This cumulative melting provides a steady source of iron, fuelling an intense phytoplankton bloom that is not fully captured by monthly satellite production estimates. These findings imply that future changes in sea-ice cover and dynamics could have a significant effect on carbon sequestration in the SO.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide a compilation of downward fluxes (total mass, POC, PON, BSiO2, CaCO3, PIC and lithogenic/terrigenous fluxes) from over 6000 sediment trap measurements distributed in the Atlantic Ocean, from 30 degree North to 49 degree South, and covering the period 1982-2011. Data from the Mediterranean Sea are also included. Data were compiled from different sources: data repositories (BCO-DMO, PANGAEA), time series sites (BATS, CARIACO), published scientific papers and/or personal communications from PI's. All sources are specifed in the data set. Data from the World Ocean Atlas 2009 were extracted to provide each flux observation with contextual environmental data, such as temperature, salinity, oxygen (concentration, AOU and percentage saturation), nitrate, phosphate and silicate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The radiogenic isotope composition of the Rare Earth Element (REE) neodymium (Nd) is a powerful water mass proxy for present and past ocean circulation. The processes controlling the Nd budget of the global ocean are not quantitatively understood and in particular source and sink mechanisms are still under debate. In this study we present the first full water column data set of dissolved Nd isotope compositions and Nd concentrations for the Eastern Equatorial Pacific (EEP), where one of the globally largest Oxygen Minimum Zones (OMZ) is located. This region is of particular interest for understanding the biogeochemical cycling of REEs because anoxic conditions may lead to release of REEs from the shelf, whereas high particle densities and fluxes potentially remove the REEs from the water column. Data were obtained between 11400N and 161S along a nearshore and an offshore transect. Near surface zonal current bands, such as the Equatorial Undercurrent (EUC) and the Subsurface Countercurrent (SSCC), which are supplying oxygen-rich water to the OMZ are characterized by radiogenic Nd isotope signatures (eNd=-2). Surface waters in the northernmost part of the study area are even more radiogenic (eNd = +3), most likely due to release of Nd from volcanogenic material. Deep and bottom waters at the southernmost offshore station (141S) are clearly controlled by advection of water masses with less radiogenic signatures (eNd=- 7) originating from the Southern Ocean. Towards the equator, however, the deep waters show a clear trend towards more radiogenic values of up to eNd=-2. The northernmost station located in the Panama basin shows highly radiogenic Nd isotope signatures in the entire water column, which indicates that particle scavenging, downward transport and release processes play an important role. This is supported by relatively low Nd concentrations in deep waters (3000-6000 m) in the EEP (20 pmol/kg) compared to locations in the Northern and Central Pacific (40-60 pmol/kg), which suggests enhanced removal of Nd in the EEP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Global databases of calcium carbonate concentrations and mass accumulation rates in Holocene and last glacial maximum sediments were used to estimate the deep-sea sedimentary calcium carbonate burial rate during these two time intervals. Sparse calcite mass accumulation rate data were extrapolated across regions of varying calcium carbonate concentration using a gridded map of calcium carbonate concentrations and the assumption that accumulation of noncarbonate material is uncorrelated with calcite concentration within some geographical region. Mean noncarbonate accumulation rates were estimated within each of nine regions, determined by the distribution and nature of the accumulation rate data. For core-top sediments the regions of reasonable data coverage encompass 67% of the high-calcite (>75%) sediments globally, and within these regions we estimate an accumulation rate of 55.9 ± 3.6 x 10**11 mol/yr. The same regions cover 48% of glacial high-CaCO3 sediments (the smaller fraction is due to a shift of calcite deposition to the poorly sampled South Pacific) and total 44.1 ± 6.0 x 10**11 mol/yr. Projecting both estimates to 100 % coverage yields accumulation estimates of 8.3 x 10**12 mol/yr today and 9.2 x 10**12 mol/yr during glacial time. This is little better than a guess given the incomplete data coverage, but it suggests that glacial deep sea calcite burial rate was probably not considerably faster than today in spite of a presumed decrease in shallow water burial during glacial time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thirty seven deep-sea sediment cores from the Arabian Sea were studied geochemically (49 major and trace elements) for four time slices during the Holocene and the last glacial, and in one high sedimentation rate core (century scale resolution) to detect tracers of past variations in the intensity of the atmospheric monsoon circulation and its hydrographic expression in the ocean surface. This geochemical multi-tracer approach, coupled with additional information on the grain size composition of the clastic fraction, the bulk carbonate and biogenic opal contents makes it possible to characterize the sedimentological regime in detail. Sediments characterized by a specific elemental composition (enrichment) originated from the following sources: river suspensions from the Tapti and Narbada, draining the Indian Deccan traps (Ti, Sr); Indus sediments and dust from Rajasthan and Pakistan (Rb, Cs); dust from Iran and the Persian Gulf (Al, Cr); dust from central Arabia (Mg); dust from East Africa and the Red Sea (Zr/Hf, Ti/Al). Corg, Cd, Zn, Ba, Pb, U, and the HREE are associated with the intensity of upwelling in the western Arabian Sea, but only those patterns that are consistently reproduced by all of these elements can be directly linked with the intensity of the southwest monsoon. Relying on information from a single element can be misleading, as each element is affected by various other processes than upwelling intensity and nutrient content of surface water alone. The application of the geochemical multi-tracer approach indicates that the intensity of the southwest monsoon was low during the LGM, declined to a minimum from 15,000-13,000 14C year BP, intensified slightly at the end of this interval, was almost stable during the Bölling, Alleröd and the Younger Dryas, but then intensified in two abrupt successions at the end of the Younger Dryas (9900 14C year BP) and especially in a second event during the early Holocene (8800 14C year BP). Dust discharge by northwesterly winds from Arabia exhibited a similar evolution, but followed an opposite course: high during the LGM with two primary sources-the central Arabian desert and the dry Persian Gulf region. Dust discharge from both regions reached a pronounced maximum at 15,000-13,000 14C year. At the end of this interval, however, the dust plumes from the Persian Gulf area ceased dramatically, whereas dust discharge from central Arabia decreased only slightly. Dust discharge from East Africa and the Red Sea increased synchronously with the two major events of southwest monsoon intensification as recorded in the nutrient content of surface waters. In addition to the tracers of past dust flux and surface water nutrient content, the geochemical multi-tracer approach provides information on the history of deep sea ventilation (Mo, S), which was much lower during the last glacial maximum than during the Holocene. The multi-tracer approach-i.e. a few sedimentological parameters plus a set of geochemical tracers widely available from various multi-element analysis techniques-is a highly applicable technique for studying the complex sedimentation patterns of an ocean basin, and, specifically in the case of the Arabian Sea, can even reveal the seasonal structure of climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Anticyclonic mesoscale eddies (ACME) have been proposed as a mechanism by which new nutrients are episodically delivered into the euphotic zone, thereby enhancing new production as well as shifting phytoplankton community structure. In this paper, we report on a 34-month sediment trap experiment at the Cape Verde Ocean Observatory (CVOO; ca. 18°N, 24°E; December 2009-October 2012), occasionally influenced by ACME passages. The typically oligotrophic, weakly seasonal particle flux pattern at the CVOO is strongly modified by the appearance of a highly productive and low oxygen ACME. Out of four recorded diatom flux maxima at CVOO, three were associated with the passage of ACMEs. The recorded diatom maxima events support the view that local ACME dynamics promotes upward nutrient supply into the euphotic zone leading to a rapid response of diatoms. This response is clearly reflected by the flux seasonality: between 40% and 60% of the total annual diatom flux at the CVOO site was intercepted in a relatively short time interval (<60 days). A highly diverse diatom community characterized the diatom fluxes throughout. Along with the ACME passages, small species of the genus Nitzschia, and Thalassionema nitzschioides var. parva dominated and delivered a major portion of the opal and organic carbon into deeper waters at site CVOO. Several pelagic, warm-water background species became dominant during intervals with low nutrient availability in the euphotic zone. Results of our interannual time-series suggest that ACMEs impact on total diatom production and the species-specific composition of the assemblage north of the Cave Verde Islands, and can strengthen the biological pump in open-ocean, oligotrophic subtropical regions of the world ocean. Our observations are useful for testing biogeochemical ocean models and will also help in improving the knowledge of processes and mechanisms behind interannual time-series of bulk components and microorganisms in pelagic and hemipelagic ocean areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A sediment core, collected from the western part of the continental slope of the Ross Sea at 2380 m water depth, records events of the last two climatic cycles (250 kyr). A 230Thex-based chronology was obtained and boundaries of the isotope stages were set assuming that biological productivity was enhanced during periods of less ice cover. Then, 230Thex0, organic carbon, biogenic silica and biogenic Ba distributions were compared to the glacial-interglacial stage boundaries and corresponding ages of the delta18O record of Martinson et al. [Martinson et al., 1987, doi:10.1016/0033-5894(87)90046-9]. Sediment accumulation rates ranged between 1.2 cm kyr**-1 in the isotope stage 6 and 3.8 cm kyr**-1 during the Holocene. Variations in the concentrations and fluxes of organic carbon, biogenic Ba, biogenic silica and Mn gave information on palaeoclimate changes. Processes of sediment redistribution in the Ross Sea margin were enlightened from a comparison of the measured and expected fluxes of 230Thex. Calculation of the focusing-corrected accumulation rates of biogenic Ba enabled us to evaluate the export palaeoproductivity. Corrected accumulation rates of biogenic components and calculated palaeoproductivities were low, compared to the Antarctic Polar Front in the Atlantic sector, throughout the last two climatic cycles. Glacial-interglacial changes of sea ice cover and ventilation of the Ross Sea were probably major causes of variations in biogenic particle flux and distribution of redox-sensitive elements within the sediment column.