988 resultados para amorphous silicon


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Boron-doped hydrogenated silicon films with different gaseous doping ratios (B_2H_6/SiH_4) were deposited in a plasma-enhanced chemical vapor deposition (PECVD) system. The microstructure of the films was investigated by atomic force microscopy (AFM) and Raman scattering spectroscopy. The electrical properties of the films were characterized by their room temperature electrical conductivity (σ) and the activation energy (E_a). The results show that with an increasing gaseous doping ratio, the silicon films transfer from a microcrystalline to an amorphous phase, and corresponding changes in the electrical properties were observed. The thin boron-doped silicon layers were fabricated as recombination layers in tunnel junctions. The measurements of the Ⅰ-Ⅴ characteristics and the transparency spectra of the junctions indicate that the best gaseous doping ratio of the recombination layer is 0.04, and the film deposited under that condition is amorphous silicon with a small amount of crystallites embedded in it. The junction with such a recombination layer has a small resistance, a nearly ohmic contact, and a negligible optical absorption.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A 1.55μm Fabry-Perot (F-P) thermo-optical tunable filter is fabricated. The cavity is made of amorphous silicon (a-Si) layer grown by electron-beam evaporation technique. Due to the excellent thermo-optical property of a-Si, the refractive index of the F-P cavity will be changed by heating; the transmittance resonant peak will therefore shift substantially. The measured tuning range is 12nm, FWHM (full-width-at-half-maximum) of the transmission peak is 9nm, and heating efficiency is 0.1K/mW. The large FWHM is mainly due to the non-ideal coating deposition and mirror undulation. Possible improvements to increase the efficiency of heating are suggested.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polymorphous silicon (pm-Si:H) films have been prepared by a new regime of plasma enhanced chemical vapour deposition in the region adjacent of phase transition from amorphous to microcrystalline state. Comparing to the conventional amorphous silicon (a-Si:H), the pm-Si:H has higher photoconductivity (sigma(ph)), better stability, and a broader light spectral response range in the longer wavelength range. It can be found from Raman spectra that there is a notable improvement in the medium range order. There are a blue shift for the stretching mode of IR spectra and a red shift for the wagging mode. The shifts are attributed to the variation of the microstructure. By using pm-Si:H film as intrinsic layer, a p-i-n junction solar cell was prepared with the initial efficiency of 8.51% and a stabilized efficiency of 8.01% (AM1.5, 100mw/cm(2)) at room temperature (T-R).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A novel pulsed rapid thermal processing (PRTP) method has been used for realizing the solid-phase crystallization of amorphous silicon films prepared by PECVD. The microstructure and surface morphology of the crystallized films are investigated by X-ray diffraction (XRD) and atomic force microscopy (AFM). The results indicate that this PRTP is a suitable post-crystallization technique for fabricating large-area polycrystalline silicon films with good structural qualities such as large grain size, small lattice microstain and smooth surface morphology on low-cost substrate.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A polycrystalline silicon thin film was fabricated on glass substrate by means of aluminum induced crystallization (AIC). Al and alpha-Si layers were deposited by magnetron sputtering respectively and annealed at 480A degrees C for 1 h to realize layer exchange. The polycrystalline silicon thin film was continuous and strongly (111) oriented. By analyzing the structure variation of the oxidation membrane and lattice mismatch between gamma-Al2O3 and Si, it was concluded that aluminum promoted the formation of (111) oriented silicon nucleus by controlling the orientation of gamma-Al2O3, which was formed at the early stage of annealing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oxidized amorphous Si3N4 and SiO2 powders were pressed alone or as a mixture under high pressure (1.0-5.0 GPa) at high temperatures (800-1700 degreesC). Formation of crystalline silicon oxynitride (Si(2ON)2) was observed from amorphous silicon nitride (Si3N4) powders containing 5.8 wt% oxygen at 1.0 GPa and 1400 degreesC, The Si2ON2 coexisted with beta -Si3N4 with a weight fraction of 40 wt%, suggesting that all oxygen in the powders participated in the reaction to form Si2ON2. Pressing a mixture of amorphous Si3N4 of lower oxygen (1.5 wt%) and SiO2 under 1.0-5.0 GPa between 1000 degrees and 1350 degreesC did not give Si2ON2 phase, but yielded a mixture of alpha,beta -Si3N4, quartz, and coesite (a high-pressure form of SiO2). The formation of Si2ON2, from oxidized amorphous Si3N4 seemed to be assisted by formation of a Si-O-N melt in the system that was enhanced under the high pressure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Young’s modulus and Poisson’s ratio of high-quality silicon nitride films with 800 nm thickness, grown on silicon substrates by low-pressure chemical vapor deposition, were determined by measuring the dispersion of laser-induced surface acoustic waves. The Young’s modulus was also measured by mechanical tuning of commercially available silicon nitride cantilevers, manufactured from the same material, using the tapping mode of a scanning force microscope. For this experiment, an expression for the oscillation frequencies of two-media beam systems is derived. Both methods yield a Young’s modulus of 280–290 GPa for amorphous silicon nitride, which is substantially higher than previously reported (E5146 GPa). For Poisson’s ratio, a value of n 50.20 was obtained. These values are relevant for the determination of the spring constant of the cantilever and the effective tip–sample stiffness

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the relationship between the optical gap and the optical-absorption tail breadth for the case of amorphous gallium arsenide (a-GaAs). In particular, we analyze the optical-absorption spectra corresponding to some recently prepared a-GaAs samples. The optical gap and the optical-absorption tail breadth corresponding to each sample is determined. Plotting the optical gap as a function of the corresponding optical-absorption tail breadth, we note that a trend, similar to that found for the cases of the hydrogenated amorphous silicon and hydrogenated amorphous germanium, is also found for the case of a-GaAs. The impact of alloying on the optical-absorption spectrum associated with a-GaAs is also briefly examined. (C) 2004 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, ETauc, of these films were obtained via transmission spectra in the ultraviolet-visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of ETauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased ETauc. The mechanical properties - hardness, elastic modulus and stiffness - of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD. ©2013 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

One of the key steps to achieve high efficiencies in amorphous/crystalline silicon photovoltaic structures is to design low-ohmic-resistance backcontacts with good passivation in the rear part of the cell. A well known approach to achieve this goal is to use laser-fired contact (LFC) processes in which a metal layer is fired through the dielectric to define good contacts with the semiconductor. However, and despite the fact that this approach has demonstrated to be extremely successful, there is still enough room for process improvement with an appropriate optimization. In this paper, a study focused on the optimal adjustment of the irradiation parameters to produce laser-fired contacts in a-Si:H/c-Si heterojunctionsolarcells is presented. We used samples consisting of crystalline-silicon (c-Si) wafers together with a passivation layer of intrinsic hydrogenated amorphous silicon (a-Si:H(i)) deposited by plasma-enhanced chemical deposition (PECVD). Then, an aluminum layer was evaporated on both sides, the thickness of this layer varied from 0.2 to 1 μm in order to identify the optimal amount of Al required to create an appropriate contact. A q-switched Nd:YVO4laser source, λ = 532 nm, was used to locally fire the aluminum through the thin a-Si:H(i)-layers to form the LFC. The effects of laser fluences were analyzed using a comprehensive morphological and electrical characterization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this research is to characterise the mechanical properties of multicrystalline silicon for photovoltaic applications that was crystallised from silicon feedstock with a high content of several types of impurities. The mechanical strength, fracture toughness and elastic modulus were measured at different positions within a multicrystalline silicon block to quantify the effect of impurity segregation on these mechanical properties. The microstructure and fracture surfaces of the samples was exhaustively analysed with a scanning electron microscope in order to correlate the values of mechanical properties with material microstructure. Fracture stresses values were treated statistically via the Weibull statistics. The results of this research show that metals segregate to the top of the block, produce moderate microcracking and introduce high thermal stresses. Silicon oxide is produced at the bottom part of the silicon block, and its presence significantly reduces the mechanical strength and fracture toughness of multicrystalline silicon due to both thermal and elastic mismatch between silicon and the silicon oxide inclusions. Silicon carbide inclusions from the upper parts of the block increase the fracture toughness and elastic modulus of multicrystalline silicon. Additionally, the mechanical strength of multicrystalline silicon can increase when the radius of the silicon carbide inclusions is smaller than ~10 µm. The most damaging type of impurity inclusion for the multicrystalline silicon block studied in this work was amorphous silicon oxide. The oriented precipitation of silicon oxide at grain and twin boundaries eases the formation of radial cracks between inclusions and decreases significatively the mechanical strength of multicrystalline silicon. The second most influencing type of impurity inclusions were metals like aluminium and copper, that cause spontaneous microcracking in their surroundings after the crystallisation process, therefore reducing the mechanical response of multicrystalline silicon. Therefore, solar cell producers should pay attention to the content of metals and oxygen within the silicon feedstock in order to produce solar cells with reliable mechanical properties.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A femtosecond pump-probe setup was used to measure the time resolved reflectivity of hydrogenated amorphous silicon containing crystalline silicon nanoparticles at eight different incidence angles. Results fitted with the Drude model found a scattering rate of G = 2-1+1.2×1015?s-1 at a corresponding carrier concentration of ~ 1020?cm-3. The observed scattering rate is attributed to enhanced carrier-carrier interaction in optically pumped nanocrystals.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have deposited intrinsic amorphous silicon (a-Si:H) using the electron cyclotron resonance (ECR) chemical vapor deposition technique in order to analyze the a-Si:H/c-Si heterointerface and assess the possible application in heterojunction with intrinsic thin layer (HIT) solar cells. Physical characterization of the deposited films shows that the hydrogen content is in the 15-30% range, depending on deposition temperature. The optical bandgap value is always comprised within the range 1.9- 2.2 eV. Minority carrier lifetime measurements performed on the heterostructures reach high values up to 1.3 ms, indicating a well-passivated a-Si:H/c-Si heterointerface for deposition temperatures as low as 100°C. In addition, we prove that the metal-oxide- semiconductor conductance method to obtain interface trap distribution can be applied to the a-Si:H/c-Si heterointerface, since the intrinsic a-Si:H layer behaves as an insulator at low or negative bias. Values for the minimum of D_it as low as 8 × 10^10 cm^2 · eV^-1 were obtained for our samples, pointing to good surface passivation properties of ECR-deposited a-Si:H for HIT solar cell applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, the delivery and portal imaging of one square-field and one conformal radiotherapy treatment was simulated using the Monte Carlo codes BEAMnrc and DOSXYZnrc. The treatment fields were delivered to a humanoid phantom from different angles by a 6 MV photon beam linear accelerator, with an amorphous-silicon electronic portal imaging device (a-Si EPID) used to provide images of the phantom generated by each field. The virtual phantom preparation code CTCombine was used to combine a computed-tomography-derived model of the irradiated phantom with a simple, rectilinear model of the a-Si EPID, at each beam angle used in the treatment. Comparison of the resulting experimental and simulated a-Si EPID images showed good agreement, within \[gamma](3%, 3 mm), indicating that this method may be useful in providing accurate Monte Carlo predictions of clinical a-Si EPID images, for use in the verification of complex radiotherapy treatments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The precise shape of the three-dimensional dose distributions created by intensity-modulated radiotherapy means that the verification of patient position and setup is crucial to the outcome of the treatment. In this paper, we investigate and compare the use of two different image calibration procedures that allow extraction of patient anatomy from measured electronic portal images of intensity-modulated treatment beams. Methods and Materials: Electronic portal images of the intensity-modulated treatment beam delivered using the dynamic multileaf collimator technique were acquired. The images were formed by measuring a series of frames or segments throughout the delivery of the beams. The frames were then summed to produce an integrated portal image of the delivered beam. Two different methods for calibrating the integrated image were investigated with the aim of removing the intensity modulations of the beam. The first involved a simple point-by-point division of the integrated image by a single calibration image of the intensity-modulated beam delivered to a homogeneous polymethyl methacrylate (PMMA) phantom. The second calibration method is known as the quadratic calibration method and required a series of calibration images of the intensity-modulated beam delivered to different thicknesses of homogeneous PMMA blocks. Measurements were made using two different detector systems: a Varian amorphous silicon flat-panel imager and a Theraview camera-based system. The methods were tested first using a contrast phantom before images were acquired of intensity-modulated radiotherapy treatment delivered to the prostate and pelvic nodes of cancer patients at the Royal Marsden Hospital. Results: The results indicate that the calibration methods can be used to remove the intensity modulations of the beam, making it possible to see the outlines of bony anatomy that could be used for patient position verification. This was shown for both posterior and lateral delivered fields. Conclusions: Very little difference between the two calibration methods was observed, so the simpler division method, requiring only the single extra calibration measurement and much simpler computation, was the favored method. This new method could provide a complementary tool to existing position verification methods, and it has the advantage that it is completely passive, requiring no further dose to the patient and using only the treatment fields.