804 resultados para User Interface Development
Resumo:
This paper reviews the key features of an environment to support domain users in spatial information system (SIS) development. It presents a full design and prototype implementation of a repository system for the storage and management of metadata, focusing on a subset of spatial data integrity constraint classes. The system is designed to support spatial system development and customization by users within the domain that the system will operate.
Resumo:
Achieving consistency between a specification and its implementation is an important part of software development In previous work, we have presented a method and tool support for testing a formal specification using animation and then verifying an implementation of that specification. The method is based on a testgraph, which provides a partial model of the application under test. The testgraph is used in combination with an animator to generate test sequences for testing the formal specification. The same testgraph is used during testing to execute those same sequences on the implementation and to ensure that the implementation conforms to the specification. So far, the method and its tool support have been applied to software components that can be accessed through an application programmer interface (API). In this paper, we use an industrially-based case study to discuss the problems associated with applying the method to a software system with a graphical user interface (GUI). In particular, the lack of a standardised interface, as well as controllability and observability problems, make it difficult to automate the testing of the implementation. The method can still be applied, but the amount of testing that can be carried on the implementation is limited by the manual effort involved.
Resumo:
The Internet of Things (IoT) consists of a worldwide “network of networks,” composed by billions of interconnected heterogeneous devices denoted as things or “Smart Objects” (SOs). Significant research efforts have been dedicated to port the experience gained in the design of the Internet to the IoT, with the goal of maximizing interoperability, using the Internet Protocol (IP) and designing specific protocols like the Constrained Application Protocol (CoAP), which have been widely accepted as drivers for the effective evolution of the IoT. This first wave of standardization can be considered successfully concluded and we can assume that communication with and between SOs is no longer an issue. At this time, to favor the widespread adoption of the IoT, it is crucial to provide mechanisms that facilitate IoT data management and the development of services enabling a real interaction with things. Several reference IoT scenarios have real-time or predictable latency requirements, dealing with billions of device collecting and sending an enormous quantity of data. These features create a new need for architectures specifically designed to handle this scenario, hear denoted as “Big Stream”. In this thesis a new Big Stream Listener-based Graph architecture is proposed. Another important step, is to build more applications around the Web model, bringing about the Web of Things (WoT). As several IoT testbeds have been focused on evaluating lower-layer communication aspects, this thesis proposes a new WoT Testbed aiming at allowing developers to work with a high level of abstraction, without worrying about low-level details. Finally, an innovative SOs-driven User Interface (UI) generation paradigm for mobile applications in heterogeneous IoT networks is proposed, to simplify interactions between users and things.
Resumo:
The Internet is becoming an increasingly important portal to health information and means for promoting health in user populations. As the most frequent users of online health information, young women are an important target population for e-health promotion interventions. Health-related websites have traditionally been generic in design, resulting in poor user engagement and affecting limited impacts on health behaviour change. Mounting evidence suggests that the most effective health promotion communication strategies are collaborative in nature, fully engaging target users throughout the development process. Participatory design approaches to interface development enable researchers to better identify the needs and expectations of users, thus increasing user engagement in, and promoting behaviour change via, online health interventions. This article introduces participatory design methods applicable to online health intervention design and presents an argument for the use of such methods in the development of e-Health applications targeted at young women.
Resumo:
While mobile devices offer many innovative possibilities to help increase the standard of living for individuals with disabilities and other special needs, the process of developing assistive technology, such that it will be effective across a group of individuals with a particular disability, can be extremely challenging. This chapter discusses key issues and trends related to designing and evaluating mobile assistive technology for individuals with disabilities. Following an overview of general design process issues, we argue (based on current research trends) that individuals with disabilities and domain experts be involved throughout the development process. While this, in itself, presents its own set of challenges, many strategies have successfully been used to overcome the difficulties and maximize the contributions of users and experts alike. Guidelines based on these strategies are discussed and are illustrated with real examples from one of our active research projects.
Resumo:
The development of appropriate lab-based evaluation techniques for mobile technologies requires continued research attention. In particular, experimental design needs to account for the environmental context in which such technologies will ultimately be used. This requires, in part, that relevant environmental distractions be incorporated into evaluations. This chapter reflects on different techniques that were used in three separate lab-based mobile evaluation experiments to present visual distractions to participants and to measure the participants’ cognizance of the distractions during the course of mobile evaluations of technology. The different techniques met the different needs of the three studies with respect to the fidelity of the data captured, the impact of acknowledging distractions on the evaluation task, and the typical context of use for the technology being evaluated. The results of the studies showed that the introduction of visual distractions did have an impact on the experimental task and indicate that future work is required in this area.
Resumo:
This thesis provides a set of tools for managing uncertainty in Web-based models and workflows.To support the use of these tools, this thesis firstly provides a framework for exposing models through Web services. An introduction to uncertainty management, Web service interfaces,and workflow standards and technologies is given, with a particular focus on the geospatial domain.An existing specification for exposing geospatial models and processes, theWeb Processing Service (WPS), is critically reviewed. A processing service framework is presented as a solutionto usability issues with the WPS standard. The framework implements support for Simple ObjectAccess Protocol (SOAP), Web Service Description Language (WSDL) and JavaScript Object Notation (JSON), allowing models to be consumed by a variety of tools and software. Strategies for communicating with models from Web service interfaces are discussed, demonstrating the difficultly of exposing existing models on the Web. This thesis then reviews existing mechanisms for uncertainty management, with an emphasis on emulator methods for building efficient statistical surrogate models. A tool is developed to solve accessibility issues with such methods, by providing a Web-based user interface and backend to ease the process of building and integrating emulators. These tools, plus the processing service framework, are applied to a real case study as part of the UncertWeb project. The usability of the framework is proved with the implementation of aWeb-based workflow for predicting future crop yields in the UK, also demonstrating the abilities of the tools for emulator building and integration. Future directions for the development of the tools are discussed.
Resumo:
The development of appropriate lab-based evaluation techniques for mobile technologies requires continued research attention. In particular, experimental design needs to account for the environmental context in which such technologies will ultimately be used. This requires, in part, that relevant environmental distractions be incorporated into evaluations. This chapter reflects on different techniques that were used in three separate lab-based mobile evaluation experiments to present visual distractions to participants and to measure the participants’ cognizance of the distractions during the course of mobile evaluations of technology. The different techniques met the different needs of the three studies with respect to the fidelity of the data captured, the impact of acknowledging distractions on the evaluation task, and the typical context of use for the technology being evaluated. The results of the studies showed that the introduction of visual distractions did have an impact on the experimental task and indicate that future work is required in this area.
Resumo:
While mobile devices offer many innovative possibilities to help increase the standard of living for individuals with disabilities and other special needs, the process of developing assistive technology, such that it will be effective across a group of individuals with a particular disability, can be extremely challenging. This chapter discusses key issues and trends related to designing and evaluating mobile assistive technology for individuals with disabilities. Following an overview of general design process issues, we argue (based on current research trends) that individuals with disabilities and domain experts be involved throughout the development process. While this, in itself, presents its own set of challenges, many strategies have successfully been used to overcome the difficulties and maximize the contributions of users and experts alike. Guidelines based on these strategies are discussed and are illustrated with real examples from one of our active research projects.
Resumo:
A Case-Based Reasoning (CBR) tool is software that can be used to develop several applications that require cased-based reasoning methodology. CBR shells are kind of application generators with graphical user interface. They can be used by non-programmer users but the extension or integration of new components in these tools is not possible. In this paper we analyzed three CBR object-oriented framework development environments CBR*Tools, CAT-CBR, and JColibri. These frameworks work as open software development environment and facilitate the reuse of their design as well as implementations.
Resumo:
The premise of this dissertation is to create a highly integrated platform that combines the most current recording technologies for brain research through the development of new algorithms for three-dimensional (3D) functional mapping and 3D source localization. The recording modalities that were integrated include: Electroencephalography (EEG), Optical Topographic Maps (OTM), Magnetic Resonance Imaging (MRI), and Diffusion Tensor Imaging (DTI). This work can be divided into two parts: The first part involves the integration of OTM with MRI, where the topographic maps are mapped to both the skull and cortical surface of the brain. This integration process is made possible through the development of new algorithms that determine the probes location on the MRI head model and warping the 2D topographic maps onto the 3D MRI head/brain model. Dynamic changes of the brain activation can be visualized on the MRI head model through a graphical user interface. The second part of this research involves augmenting a fiber tracking system, by adding the ability to integrate the source localization results generated by commercial software named Curry. This task involved registering the EEG electrodes and the dipole results to the MRI data. Such Integration will allow the visualization of fiber tracts, along with the source of the EEG, in a 3D transparent brain structure. The research findings of this dissertation were tested and validated through the participation of patients from Miami Children Hospital (MCH). Such an integrated platform presented to the medical professionals in the form of a user-friendly graphical interface is viewed as a major contribution of this dissertation. It should be emphasized that there are two main aspects to this research endeavor: (1) if a dipole could be situated in time at its different positions, its trajectory may reveal additional information on the extent and nature of the brain malfunction; (2) situating such a dipole trajectory with respect to the fiber tracks could ensure the preservation of these fiber tracks (axons) during surgical interventions, preserving as a consequence these parts of the brain that are responsible for information transmission.
Resumo:
Supervisory Control & Data Acquisition (SCADA) systems are used by many industries because of their ability to manage sensors and control external hardware. The problem with commercially available systems is that they are restricted to a local network of users that use proprietary software. There was no Internet development guide to give remote users out of the network, control and access to SCADA data and external hardware through simple user interfaces. To solve this problem a server/client paradigm was implemented to make SCADAs available via the Internet. Two methods were applied and studied: polling of a text file as a low-end technology solution and implementing a Transmission Control Protocol (TCP/IP) socket connection. Users were allowed to login to a website and control remotely a network of pumps and valves interfaced to a SCADA. This enabled them to sample the water quality of different reservoir wells. The results were based on real time performance, stability and ease of use of the remote interface and its programming. These indicated that the most feasible server to implement is the TCP/IP connection. For the user interface, Java applets and Active X controls provide the same real time access.
Resumo:
A man-machine system called teleoperator system has been developed to work in hazardous environments such as nuclear reactor plants. Force reflection is a type of force feedback in which forces experienced by the remote manipulator are fed back to the manual controller. In a force-reflecting teleoperation system, the operator uses the manual controller to direct the remote manipulator and receives visual information from a video image and/or graphical animation on the computer screen. This thesis presents the design of a portable Force-Reflecting Manual Controller (FRMC) for the teleoperation of tasks such as hazardous material handling, waste cleanup, and space-related operations. The work consists of the design and construction of a prototype 1-Degree-of-Freedom (DOF) FRMC, the development of the Graphical User Interface (GUI), and system integration. Two control strategies - PID and fuzzy logic controllers are developed and experimentally tested. The system response of each is analyzed and evaluated. In addition, the concept of a telesensation system is introduced, and a variety of design alternatives of a 3-DOF FRMC are proposed for future development.
Resumo:
Event-B is a formal method for modeling and verification of discrete transition systems. Event-B development yields proof obligations that must be verified (i.e. proved valid) in order to keep the produced models consistent. Satisfiability Modulo Theory solvers are automated theorem provers used to verify the satisfiability of logic formulas considering a background theory (or combination of theories). SMT solvers not only handle large firstorder formulas, but can also generate models and proofs, as well as identify unsatisfiable subsets of hypotheses (unsat-cores). Tool support for Event-B is provided by the Rodin platform: an extensible Eclipse based IDE that combines modeling and proving features. A SMT plug-in for Rodin has been developed intending to integrate alternative, efficient verification techniques to the platform. We implemented a series of complements to the SMT solver plug-in for Rodin, namely improvements to the user interface for when proof obligations are reported as invalid by the plug-in. Additionally, we modified some of the plug-in features, such as support for proof generation and unsat-core extraction, to comply with the SMT-LIB standard for SMT solvers. We undertook tests using applicable proof obligations to demonstrate the new features. The contributions described can potentially affect productivity in a positive manner.
Resumo:
Funding for this study was received from the Chief Scientist Office for Scotland. We would like to thank Asthma UK and Asthma UK Scotland for facilitating the advertisement of the study pilot and consultative user group. Thanks to Dr Mark Grindle for his helpful discussions concerning narrative. Thanks also to Mr Mark Haldane who designed the characters, backgrounds, and user interface used within the 3D computer animation. Particular thanks to the participants of the consultative user group for their enthusiasm, comments, and suggestions at all stages of the intervention design.