331 resultados para ULLOA
Resumo:
Self-organized InGaAs QDs are intensively studied for optoelectronic applications. Several approaches are in study to reach the emission wavelengths needed for these applications. The use of antimony (Sb) in either the capping layer or into the dots is one example. However, these studies are normally focused on buried QD (BQD) where there are still different controversial theories concerning the role of Sb. Ones suggest that Sb incorporates into the dot [1], while others support the hypothesis that the Sb occupies positions surrounding the dot [2] thus helping to keep their shape during the capping growth.
Resumo:
Self-assembled InGaAs quantum dots show unique physical properties such as three dimensional confinement, high size homogeneity, high density and low number of dislocations. They have been extensively used in the active regions of laser devices for optical communications applications [1]. Therefore, buried quantum dots (BQDs) embedded in wider band gap materials have been normally studied. The wave confinement in all directions and the stress field around the dot affect both optical and electrical properties [2, 3]. However, surface quantum dots (SQDs) are less affected by stress, although their optical and electrical characteristics have a strong dependence on surface fluctuation. Thus, they can play an important role in sensor applications
Resumo:
The optical and structural properties of InAs/GaAs quantum dots (QD) are strongly modified through the use of a thin (~ 5 nm) GaAsSb(N) capping layer. In the case of GaAsSb-capped QDs, cross-sectional scanning tunnelling microscopy measurements show that the QD height can be controllably tuned through the Sb content up to ~ 14 % Sb. The increased QD height (together with the reduced strain) gives rise to a strong red shift and a large enhancement of the photoluminescence (PL) characteristics. This is due to improved carrier confinement and reduced sensitivity of the excitonic bandgap to QD size fluctuations within the ensemble. Moreover, the PL degradation with temperature is strongly reduced in the presence of Sb. Despite this, emission in the 1.5 !lm region with these structures is only achieved for high Sb contents and a type-II band alignment that degrades the PL. Adding small amounts of N to the GaAsSb capping layer allows to progressively reduce the QD-barrier conduction band offset. This different strategy to red shift the PL allows reaching 1.5 !lm with moderate Sb contents, keeping therefore a type-I alignment. Nevertheless, the PL emission is progressively degraded when the N content in the capping layer is increased
Resumo:
Quantum dot infrared photodetectors (QDIPs) are very attractive for infrared imaging applications due to its promising features such as high temperature operation, normal incidence response and low dark current [1]. However, the key issue is to obtain a high quality active region which requires a structural optimization of the nanostructures. With using GaAsSb capping layer, the optical properties, such as the PL intensity and its full width at half maximum (FWHM), of InAs QDs have been improved in the range between 1.15 and 1.5 m, because of the reduction of the compressive strain in QDs and the increment of QD height [2]. In this work, we have demonstrated strong and narrow intraband photoresponse spectra from GaAsSb-capped InAs-based QDIPs
Resumo:
Quantum dot infrared photodetectors (QDIPs) are very attractive for many applications such as infrared imaging, remote sensing and gas sensing, thanks to its promising features such as high temperature operation, normal incidence response and low dark current [1]. However, the key issue is to obtain a high-quality active region which requires an optimization of the nanostructure. By using GaAsSb capping layer, InAs QDs have improved their optical emission in the range between 1.15 and 1.3 m (at Sb composition of 14 %), due to a reduction of a compressive strain in QD and an increment of a QD height [2]. In this work, we have demonstrated strong and narrow intraband photoresponses at ~ 5 m from GaAsSb-capped InAs/GaAs QDIPs under normal light-incidence.
Resumo:
ZnO single nanowire photodetectors have been measured in different ambient conditions in order to understand and control adsorption processes on the surface. A decrease in the conductivity has been observed as a function of time when the nanowires are exposed to air, due to adsorbed O2/H2O species at the nanowire surface. In order to have a device with stable characteristics in time, thermal desorption has been used to recover the original conductivity followed by PMMA coating of the exposed nanowire surface.
Resumo:
Diluted nitride self-assembled In(Ga)AsN quantum dots (QDs) grown on GaAs substrates are potential candidates to emit in the windows of maximum transmittance for optical fibres (1.3-1.55 μm). In this paper, we analyse the effect of nitrogen addition on the indium desorption occurring during the capping process of InxGa1−xAs QDs (x = l and 0.7). The samples have been grown by molecular beam epitaxy and studied through transmission electron microscopy (TEM) and photoluminescence techniques. The composition distribution inside the dots was determined by statistical moiré analysis and measured by energy dispersive X-ray spectroscopy. First, the addition of nitrogen in In(Ga)As QDs gave rise to a strong redshift in the emission peak, together with a large loss of intensity and monochromaticity. Moreover, these samples showed changes in the QDs morphology as well as an increase in the density of defects. The statistical compositional analysis displayed a normal distribution in InAs QDs with an average In content of 0.7. Nevertheless, the addition of Ga and/or N leads to a bimodal distribution of the Indium content with two separated QD populations. We suggest that the nitrogen incorporation enhances the indium fixation inside the QDs where the indium/gallium ratio plays an important role in this process. The strong redshift observed in the PL should be explained not only by the N incorporation but also by the higher In content inside the QDs
Resumo:
Este Diccionario Biográfico de Matemáticos incluye más de 2040 reseñas de matemáticos, entre las que hay unas 280 de españoles y 36 de mujeres (Agnesi, Blum, Byron, Friedman, Hipatia, Robinson, Scott, etc.), de las que 11 son españolas (Casamayor, Sánchez Naranjo, Sanz-Solé, etc.). Se ha obtenido la mayor parte de las informaciones por medio de los libros recogidos en el apéndice “Bibliografía consultada”; otra parte, de determinadas obras matemáticas de los autores reseñados (estas obras no están incluidas en el citado apéndice, lo están en las correspondientes reseñas de sus autores). Las obras más consultadas han sido las de Boyer, Cajori, Kline, Martinón, Peralta, Rey Pastor y Babini, Wieleitner, las Enciclopedias Espasa, Británica, Larousse, Universalis y Wikipedia. Entre las reseñas incluidas, destacan las siguientes, en orden alfabético: Al-Khuwairizmi, Apolonio, Arquímedes, Jacob y Johann Bernoulli, Brouwer, Cantor, Cauchy, Cayley, Descartes, Diofanto, Euclides, Euler, Fermat, Fourier, Galileo, Gauss, Hilbert, Lagrange, Laplace, Leibniz, Monge, Newton, Pappus, Pascal, Pitágoras, Poincaré, Ptolomeo, Riemann, Weierstrass, etc. Entre los matemáticos españoles destacan las de Echegaray, Etayo, Puig Adam, Rey Pastor, Reyes Prósper, Terradas (de quien Einstein dijo: “Es uno de los seis primeros cerebros mundiales de su tiempo y uno de los pocos que pueden comprender hoy en día la teoría de la relatividad”), Torre Argaiz, Torres Quevedo, los Torroja, Tosca, etc. Se han incluido varias referencias de matemáticos nacidos en la segunda mitad del siglo XX. Entre ellos descuellan nombres como Perelmán o Wiles. Pero para la mayor parte de ellos sería conveniente un mayor distanciamiento en el tiempo para poder dar una opinión más objetiva sobre su obra. Las reseñas no son exhaustivas. Si a algún lector le interesa profundizar en la obra de un determinado matemático, puede utilizar con provecho la bibliografía incluida, o también las obras recogidas en su reseña. En cada reseña se ha seguido la secuencia: nombre, fechas de nacimiento y muerte, profesión, nacionalidad, breve bosquejo de su vida y exposición de su obra. En algunos casos, pocos, no se ha podido encontrar el nombre completo. Cuando sólo existe el año de nacimiento, se indica con la abreviatura “n.”, y si sólo se conoce el año de la muerte, con la abreviatura “m.”. Si las fechas de nacimiento y muerte son sólo aproximadas, se utiliza la abreviatura “h.” –hacia–, abreviatura que también se utiliza cuando sólo se conoce que vivió en una determinada época. Esta utilización es, entonces, similar a la abreviatura clásica “fl.” –floreció–. En algunos casos no se ha podido incluir el lugar de nacimiento del personaje o su nacionalidad. No todos los personajes son matemáticos en sentido estricto, aunque todos ellos han realizado importantes trabajos de índole matemática. Los hay astrónomos como, por ejemplo, Brahe, Copérnico, Laplace; físicos como Dirac, Einstein, Palacios; ingenieros como La Cierva, Shannon, Stoker, Torres Quevedo (muchos matemáticos, considerados primordialmente como tales, se formaron como ingenieros, como Abel Transon, Bombelli, Cauchy, Poincaré); geólogos, cristalógrafos y mineralogistas como Barlow, Buerger, Fedorov; médicos y fisiólogos como Budan, Cardano, Helmholtz, Recorde; naturalistas y biólogos como Bertalanfly, Buffon, Candolle; anatomistas y biomecánicos como Dempster, Seluyanov; economistas como Black, Scholes; estadísticos como Akaike, Fisher; meteorólogos y climatólogos como Budyko, Richardson; filósofos como Platón, Aristóteles, Kant; religiosos y teólogos como Berkeley, Santo Tomás; historiadores como Cajori, Eneström; lingüistas como Chomsky, Grassmann; psicólogos y pedagogos como Brousseau, Fishbeim, Piaget; lógicos como Boole, Robinson; abogados y juristas como Averroes, Fantet, Schweikart; escritores como Aristófanes, Torres de Villarroel, Voltaire; arquitectos como Le Corbusier, Moneo, Utzon; pintores como Durero, Escher, Leonardo da Vinci (pintor, arquitecto, científico, ingeniero, escritor, lingüista, botánico, zoólogo, anatomista, geólogo, músico, escultor, inventor, ¿qué es lo que 6 no fue?); compositores y musicólogos como Gugler, Rameau; políticos como Alfonso X, los Banu Musa, los Médicis; militares y marinos como Alcalá Galiano, Carnot, Ibáñez, Jonquières, Poncelet, Ulloa; autodidactos como Fermat, Simpson; con oficios diversos como Alcega (sastre), Argand (contable), Bosse (grabador), Bürgi (relojero), Dase (calculista), Jamnitzer (orfebre), Richter (instrumentista), etc. También hay personajes de ficción como Sancho Panza (siendo gobernador de la ínsula Barataria, se le planteó a Sancho una paradoja que podría haber sido formulada por Lewis Carroll; para resolverla, Sancho aplicó su sentido de la bondad) y Timeo (Timeo de Locri, interlocutor principal de Platón en el diálogo Timeo). Se ha incluido en un apéndice una extensa “Tabla Cronológica”, donde en columnas contiguas están todos los matemáticos del Diccionario, las principales obras matemáticas (lo que puede representar un esbozo de la historia de la evolución da las matemáticas) y los principales acontecimientos históricos que sirven para situar la época en que aquéllos vivieron y éstas se publicaron. Cada matemático se sitúa en el año de su nacimiento, exacto o aproximado; si no se dispone de este dato, en el año de su muerte, exacto o aproximado; si no se dispone de ninguna de estas fechas, en el año aproximado de su florecimiento. Si sólo se dispone de un periodo de tiempo más o menos concreto, el personaje se clasifica en el año más representativo de dicho periodo: por ejemplo, en el año 250 si se sabe que vivió en el siglo III, o en el año -300 si se sabe que vivió hacia los siglos III y IV a.C. En el apéndice “Algunos de los problemas y conjeturas expuestos en el cuerpo del Diccionario”, se ha resumido la situación actual de algunos de dichos problemas y conjeturas. También se han incluido los problemas que Hilbert planteó en 1900, los expuestos por Smale en 1997, y los llamados “problemas del milenio” (2000). No se estudian con detalle, sólo se indica someramente de qué tratan. Esta segunda edición del Diccionario Biográfico de Matemáticos tiene por objeto su puesta a disposición de la Escuela de Ingenieros de Minas de la Universidad Politécnica de Madrid.
Resumo:
By using the spray pyrolysis methodology in its classical configuration we have grown self-assembled MgxZn1−xO quantum dots (size [similar]4–6 nm) in the overall range of compositions 0 ≤ x ≤ 1 on c-sapphire, Si (100) and quartz substrates. Composition of the quantum dots was determined by means of transmission electron microscopy-energy dispersive X-ray analysis (TEM-EDAX) and X-ray photoelectron spectroscopy. Selected area electron diffraction reveals the growth of single phase hexagonal MgxZn1−xO quantum dots with composition 0 ≤ x ≤ 0.32 by using a nominal concentration of Mg in the range 0 to 45%. Onset of Mg concentration about 50% (nominal) forces the hexagonal lattice to undergo a phase transition from hexagonal to a cubic structure which resulted in the growth of hexagonal and cubic phases of MgxZn1−xO in the intermediate range of Mg concentrations 50 to 85% (0.39 ≤ x ≤ 0.77), whereas higher nominal concentration of Mg ≥ 90% (0.81 ≤ x ≤ 1) leads to the growth of single phase cubic MgxZn1−xO quantum dots. High resolution transmission electron microscopy and fast Fourier transform confirm the results and show clearly distinguishable hexagonal and cubic crystal structures of the respective quantum dots. A difference of 0.24 eV was detected between the core levels (Zn 2p and Mg 1s) measured in quantum dots with hexagonal and cubic structures by X-ray photoemission. The shift of these core levels can be explained in the frame of the different coordination of cations in the hexagonal and cubic configurations. Finally, the optical absorption measurements performed on single phase hexagonal MgxZn1−xO QDs exhibited a clear shift in optical energy gap on increasing the Mg concentration from 0 to 40%, which is explained as an effect of substitution of Zn2+ by Mg2+ in the ZnO lattice.
Resumo:
La cripta situada bajo la sala capitular de la catedral de Mallorca, Figura 1, ha estado apeada durante varios decenios (quizá desde los años 1950 o 1960). Se trata de una bóveda de arista rebajada. Posibles razones para el apeo son los desconchones y daños que se observan en la parte baja de las aristas, las grietas en la zona cercana a la clave y un visible descenso del suelo superior en la zona central. El objetivo del presente informe es estudiar la posible retirada del apeo, que afea y entorpece el espacio de la cripta. Tras varias visitas de inspección y unos cálculos previos, resultó evidente que ni los daños ni el descenso del suelo afectan a la seguridad de la bóveda y se procedió a la retirada del apeo. En lo que sigue se exponen detalladamente los cálculos y se da una explicación del posible origen de los daños que, como se ha dicho, no afectan a la seguridad de la bóveda.
Resumo:
The Top-Hat hot electron light emission and lasing in semiconductor heterostructure (HELLISH)-vertical cavity semiconductor optical amplifier (VCSOA) is a modified version of a HELLISH-VCSOA device. It has a shorter p-channel and longer n-channel. The device studied in this work consists of a simple GaAs p-i-n junction, containing 11 Ga0.35In0.65 N0.02As0.08/GaAs multiple quantum wells in its intrinsic region; the active region is enclosed between six pairs of GaAs/AlAs top distributed Bragg reflector (DBR) mirrors and 20.5 pairs of AlAs/GaAs bottom DBR mirrors. The operation of the device is based on longitudinal current transport parallel to the layers of the GaAs p-n junction. The device is characterised through I-V-L and by spectral photoluminescence, electroluminescence and electro-photoluminescence measurements. An amplification of about 25 dB is observed at applied voltages of around V = 88 V.
Resumo:
The use of GaAsSbN capping layers on InAs/GaAs quantum dots (QDs) has recently been proposed for micro- and optoelectronic applications for their ability to independently tailor electron and hole confinement potentials. However, there is a lack of knowledge about the structural and compositional changes associated with the process of simultaneous Sb and N incorporation. In the present work, we have characterized using transmission electron microscopy techniques the effects of adding N in the GaAsSb/InAs/GaAs QD system. Firstly, strain maps of the regions away from the InAs QDs had revealed a huge reduction of the strain fields with the N incorporation but a higher inhomogeneity, which points to a composition modulation enhancement with the presence of Sb-rich and Sb-poor regions in the range of a few nanometers. On the other hand, the average strain in the QDs and surroundings is also similar in both cases. It could be explained by the accumulation of Sb above the QDs, compensating the tensile strain induced by the N incorporation together with an In-Ga intermixing inhibition. Indeed, compositional maps of column resolution from aberration-corrected Z-contrast images confirmed that the addition of N enhances the preferential deposition of Sb above the InAs QD, giving rise to an undulation of the growth front. As an outcome, the strong redshift in the photoluminescence spectrum of the GaAsSbN sample cannot be attributed only to the N-related reduction of the conduction band offset but also to an enhancement of the effect of Sb on the QD band structure.
Resumo:
The photoluminescence efficiency of GaAsSb-capped InAs/GaAs type II quantum dots (QDs) can be greatly enhanced by rapid thermal annealing while preserving long radiative lifetimes which are ∼20 times larger than in standard GaAs-capped InAs/GaAs QDs. Despite the reduced electron-hole wavefunction overlap, the type-II samples are more efficient than the type-I counterparts in terms of luminescence, showing a great potential for device applications. Strain-driven In-Ga intermixing during annealing is found to modify the QD shape and composition, while As-Sb exchange is inhibited, allowing to keep the type-II structure. Sb is only redistributed within the capping layer giving rise to a more homogeneous composition.
Resumo:
The origin of the modified optical properties of InAs/GaAs quantum dots (QD) capped with a thin GaAs1−xSbx layer is analyzed in terms of the band structure. To do so, the size, shape, and composition of the QDs and capping layer are determined through cross-sectional scanning tunnelling microscopy and used as input parameters in an 8 × 8 k·p model. As the Sb content is increased, there are two competing effects determining carrier confinement and the oscillator strength: the increased QD height and reduced strain on one side and the reduced QD-capping layer valence band offset on the other. Nevertheless, the observed evolution of the photoluminescence (PL) intensity with Sb cannot be explained in terms of the oscillator strength between ground states, which decreases dramatically for Sb > 16%, where the band alignment becomes type II with the hole wavefunction localized outside the QD in the capping layer. Contrary to this behaviour, the PL intensity in the type II QDs is similar (at 15 K) or even larger (at room temperature) than in the type I Sb-free reference QDs. This indicates that the PL efficiency is dominated by carrier dynamics, which is altered by the presence of the GaAsSb capping layer. In particular, the presence of Sb leads to an enhanced PL thermal stability. From the comparison between the activation energies for thermal quenching of the PL and the modelled band structure, the main carrier escape mechanisms are suggested. In standard GaAs-capped QDs, escape of both electrons and holes to the GaAs barrier is the main PL quenching mechanism. For small-moderate Sb (<16%) for which the type I band alignment is kept, electrons escape to the GaAs barrier and holes escape to the GaAsSb capping layer, where redistribution and retraping processes can take place. For Sb contents above 16% (type-II region), holes remain in the GaAsSb layer and the escape of electrons from the QD to the GaAs barrier is most likely the dominant PL quenching mechanism. This means that electrons and holes behave dynamically as uncorrelated pairs in both the type-I and type-II structures.
Resumo:
La comunicación pretende dar a conocer el valor constructivo de la piedra Pishilata como alternativa local al conjunto de las técnicas vernáculas de la sierra central del Ecuador, recurso que poco se ha estudiado y apenas ha sido valorado, tributando así un reconocimiento a quienes lo forjaron, en aras de fomentar su protección y conservación.