845 resultados para Timing task
Resumo:
Introdução: Os ajustes posturais antecipatórios (APAs) são essenciais para o movimento típico, estando alterados nas doenças neuro degenerativas como a doença de Parkinson (DP) Objectivo(s): Estudar os early postural adjustments e os APAs em indivíduos com DP durante o sentar para levantar (STS), com e sem dupla tarefa. Métodos: Foi recolhida a atividade eletromiográfica (EMG) dos músculos tibial anterior, solear e gastrocnémio medial, em indivíduos com e sem DP (9 em cada grupo), durante o STS. Este foi determinado pelo deslocamento antero posterior do centro de pressão através da plataforma de forças, sendo a tarefa cognitiva dada pelo stroop colour word interference test. Os ajustes posturais foram avaliados pelo tempo de ativação e pela atividade EMG relativa, bem como pela análise da co ativação agonista/antagonista. Resultados: Não foram encontradas diferenças estatisticamente significativas entre o grupo de controlo e o grupo com DP em nenhuma das variáveis analisadas Há uma tendência para o grupo com DP apresentar APAs mais cedo na tarefa simples, mantendo atividade muscular durante mais tempo e com maior atividade EMG relativa que o grupo controlo. Na dupla tarefa mantém-se essa tendência, exceto o tempo de ativação ser mais próximo do levante. Conclusão: Os défices posturais decorrentes da doença de Parkinson parecem não ser evidenciados na primeira fase do sit-to-stand.
Resumo:
Introdução: A prematuridade constitui um fator de risco para a ocorrência de lesões ao nível do sistema nervoso central, sendo que uma idade gestacional inferior a 36 semanas potencia esse mesmo risco, nomeadamente para a paralisia cerebral (PC) do tipo diplegia espástica. A sequência de movimento de sentado para de pé (SPP), sendo uma das aprendizagens motoras que exige um controlo postural (CP) ao nível da tibiotársica, parece ser uma tarefa funcional frequentemente comprometida em crianças prematuras com e sem PC. Objetivo(s): Descrever o comportamento dos músculos da tibiotársica, tibial anterior (TA) e solear (SOL), no que diz respeito ao timing de ativação, magnitude e co-ativação muscular durante a fase I e início da fase II na sequência de movimento de SPP realizada por cinco crianças prematuras com PC do tipo diplegia espástica e cinco crianças prematuras sem diagnóstico de alteração neuromotoras, sendo as primeiras sujeitas a um programa de intervenção baseado nos princípios do conceito de Bobath – Tratamento do Neurodesenvolvimento (TND). Métodos: Foram avaliadas 10 crianças prematuras, cinco com PC e cinco sem diagnóstico de alterações neuromotoras, tendo-se recorrido à eletromiografia de superfície para registar parâmetros musculares, nomeadamente timings, magnitudes e valores de co-ativação dos músculos TA e SOL, associados à fase I e inico da fase II da sequência de movimento de SPP. Procedeu-se ao registo de imagem de modo a facilitar a avaliação dos componentes de movimento associados a esta tarefa. Estes procedimentos foram realizados num único momento, no caso das crianças sem diagnóstico de alterações neuromotoras e em dois momentos, antes e após a aplicação de um programa de intervenção segundo o Conceito de Bobath – TND no caso das crianças com PC. A estas foi ainda aplicado o Teste da Medida das Funções Motoras (TMFM–88) e a Classificação Internacional da Funcionalidade Incapacidade e Saúde – crianças e jovens (CIF-CJ). Resultados: Através da eletromiografia constatou-se que ambos os grupos apresentaram timings de ativação afastados da janela temporal considerada como ajustes posturais antecipatórios (APAs), níveis elevados de co-ativação, em alguns casos com inversão na ordem de recrutamento muscular o que foi possível modificar nas crianças com PC após o período de intervenção. Nestas, verificou-se ainda que, a sequência de movimento de SPP foi realizada com menor número de compensações e com melhor relação entre estruturas proximais e distais compatível com o aumento do score final do TMFM-88 e modificação positiva nos itens de atividade e participação da CIF-CJ. Conclusão: As crianças prematuras com e sem PC apresentaram alterações no CP da tibiotársica e níveis elevados de co-ativação muscular. Após o período de intervenção as crianças com PC apresentaram modificações positivas no timing e co-ativação muscular, com impacto funcional evidenciado no aumento do score final da TMFM-88 e modificações positivas na CIF-CJ.
Resumo:
Relatório apresentado para cumprimento dos requisitos necessários à obtenção do grau Mestre em Ensino de Inglês e de Língua Estrangeira (Espanhol) no 3º Ciclo do Ensino Básico e no Ensino Secundário
Resumo:
As empresas nacionais deparam-se com a necessidade de responder ao mercado com uma grande variedade de produtos, pequenas séries e prazos de entrega reduzidos. A competitividade das empresas num mercado global depende assim da sua eficiência, da sua flexibilidade, da qualidade dos seus produtos e de custos reduzidos. Para se atingirem estes objetivos é necessário desenvolverem-se estratégias e planos de ação que envolvem os equipamentos produtivos, incluindo: a criação de novos equipamentos complexos e mais fiáveis, alteração dos equipamentos existentes modernizando-os de forma a responderem às necessidades atuais e a aumentar a sua disponibilidade e produtividade; e implementação de políticas de manutenção mais assertiva e focada no objetivo de “zero avarias”, como é o caso da manutenção preditiva. Neste contexto, o objetivo principal deste trabalho consiste na previsão do instante temporal ótimo da manutenção de um equipamento industrial – um refinador da fábrica de Mangualde da empresa Sonae Industria, que se encontra em funcionamento contínuo 24 horas por dia, 365 dias por ano. Para o efeito são utilizadas medidas de sensores que monitorizam continuamente o estado do refinador. A principal operação de manutenção deste equipamento é a substituição de dois discos metálicos do seu principal componente – o desfibrador. Consequentemente, o sensor do refinador analisado com maior detalhe é o sensor que mede a distância entre os dois discos do desfibrador. Os modelos ARIMA consistem numa abordagem estatística avançada para previsão de séries temporais. Baseados na descrição da autocorrelação dos dados, estes modelos descrevem uma série temporal como função dos seus valores passados. Neste trabalho, a metodologia ARIMA é utilizada para determinar um modelo que efetua uma previsão dos valores futuros do sensor que mede a distância entre os dois discos do desfibrador, determinando-se assim o momento ótimo da sua substituição e evitando paragens forçadas de produção por ocorrência de uma falha por desgaste dos discos. Os resultados obtidos neste trabalho constituem uma contribuição científica importante para a área da manutenção preditiva e deteção de falhas em equipamentos industriais.
Resumo:
The goal of this study was to propose a new functional magnetic resonance imaging (fMRI) paradigm using a language-free adaptation of a 2-back working memory task to avoid cultural and educational bias. We additionally provide an index of the validity of the proposed paradigm and test whether the experimental task discriminates the behavioural performances of healthy participants from those of individuals with working memory deficits. Ten healthy participants and nine patients presenting working memory (WM) deficits due to acquired brain injury (ABI) performed the developed task. To inspect whether the paradigm activates brain areas typically involved in visual working memory (VWM), brain activation of the healthy participants was assessed with fMRIs. To examine the task's capacity to discriminate behavioural data, performances of the healthy participants in the task were compared with those of ABI patients. Data were analysed with GLM-based random effects procedures and t-tests. We found an increase of the BOLD signal in the specialized areas of VWM. Concerning behavioural performances, healthy participants showed the predicted pattern of more hits, less omissions and a tendency for fewer false alarms, more self-corrected responses, and faster reaction times, when compared with subjects presenting WM impairments. The results suggest that this task activates brain areas involved in VWM and discriminates behavioural performances of clinical and non-clinical groups. It can thus be used as a research methodology for behavioural and neuroimaging studies of VWM in block-design paradigms.
Resumo:
Ergonomic interventions such as increased scheduled breaks or job rotation have been proposed to reduce upper limb muscle fatigue in repetitive low-load work. This review was performed to summarize and analyze the studies investigating the effect of job rotation and work-rest schemes, as well as, work pace, cycle time and duty cycle, on upper limb muscle fatigue. The effects of these work organization factors on subjective fatigue or discomfort were also analyzed. This review was based on relevant articles published in PubMed, Scopus and Web of Science. The studies included in this review were performed in humans and assessed muscle fatigue in upper limbs. 14 articles were included in the systematic review. Few studies were performed in a real work environment and the most common methods used to assess muscle fatigue were surface electromyography (EMG). No consistent results were found related to the effects of job rotation on muscle activity and subjective measurements of fatigue. Rest breaks had some positive effects, particularly in perceived discomfort. The increase in work pace reveals a higher muscular load in specific muscles. The duration of experiments and characteristics of participants appear to be the factors that most have influenced the results. Future research should be focused on the improvement of the experimental protocols and instrumentation, in order to the outcomes represent adequately the actual working conditions. Relevance to industry: Introducing more physical workload variation in low-load repetitive work is considered an effective ergonomic intervention against muscle fatigue and musculoskeletal disorders in industry. Results will be useful to identify the need of future research, which will eventually lead to the adoption of best industrial work practices according to the workers capabilities.
Resumo:
Heterogeneous multicore platforms are becoming an interesting alternative for embedded computing systems with limited power supply as they can execute specific tasks in an efficient manner. Nonetheless, one of the main challenges of such platforms consists of optimising the energy consumption in the presence of temporal constraints. This paper addresses the problem of task-to-core allocation onto heterogeneous multicore platforms such that the overall energy consumption of the system is minimised. To this end, we propose a two-phase approach that considers both dynamic and leakage energy consumption: (i) the first phase allocates tasks to the cores such that the dynamic energy consumption is reduced; (ii) the second phase refines the allocation performed in the first phase in order to achieve better sleep states by trading off the dynamic energy consumption with the reduction in leakage energy consumption. This hybrid approach considers core frequency set-points, tasks energy consumption and sleep states of the cores to reduce the energy consumption of the system. Major value has been placed on a realistic power model which increases the practical relevance of the proposed approach. Finally, extensive simulations have been carried out to demonstrate the effectiveness of the proposed algorithm. In the best-case, savings up to 18% of energy are reached over the first fit algorithm, which has shown, in previous works, to perform better than other bin-packing heuristics for the target heterogeneous multicore platform.
Resumo:
An ever increasing need for extra functionality in a single embedded system demands for extra Input/Output (I/O) devices, which are usually connected externally and are expensive in terms of energy consumption. To reduce their energy consumption, these devices are equipped with power saving mechanisms. While I/O device scheduling for real-time (RT) systems with such power saving features has been studied in the past, the use of energy resources by these scheduling algorithms may be improved. Technology enhancements in the semiconductor industry have allowed the hardware vendors to reduce the device transition and energy overheads. The decrease in overhead of sleep transitions has opened new opportunities to further reduce the device energy consumption. In this research effort, we propose an intra-task device scheduling algorithm for real-time systems that wakes up a device on demand and reduces its active time while ensuring system schedulability. This intra-task device scheduling algorithm is extended for devices with multiple sleep states to further minimise the overall device energy consumption of the system. The proposed algorithms have less complexity when compared to the conservative inter-task device scheduling algorithms. The system model used relaxes some of the assumptions commonly made in the state-of-the-art that restrict their practical relevance. Apart from the aforementioned advantages, the proposed algorithms are shown to demonstrate the substantial energy savings.
Resumo:
Coarse Grained Reconfigurable Architectures (CGRAs) are emerging as enabling platforms to meet the high performance demanded by modern applications (e.g. 4G, CDMA, etc.). Recently proposed CGRAs offer time-multiplexing and dynamic applications parallelism to enhance device utilization and reduce energy consumption at the cost of additional memory (up to 50% area of the overall platform). To reduce the memory overheads, novel CGRAs employ either statistical compression, intermediate compact representation, or multicasting. Each compaction technique has different properties (i.e. compression ratio, decompression time and decompression energy) and is best suited for a particular class of applications. However, existing research only deals with these methods separately. Moreover, they only analyze the compaction ratio and do not evaluate the associated energy overheads. To tackle these issues, we propose a polymorphic compression architecture that interleaves these techniques in a unique platform. The proposed architecture allows each application to take advantage of a separate compression/decompression hierarchy (consisting of various types and implementations of hardware/software decoders) tailored to its needs. Simulation results, using different applications (FFT, Matrix multiplication, and WLAN), reveal that the choice of compression hierarchy has a significant impact on compression ratio (up to 52%), decompression energy (up to 4 orders of magnitude), and configuration time (from 33 n to 1.5 s) for the tested applications. Synthesis results reveal that introducing adaptivity incurs negligible additional overheads (1%) compared to the overall platform area.
Resumo:
Signal-to-interference ratio (SIR) performance of a multiband orthogonal frequency division multiplexing ultra-wideband system with residual timing offset is investigated. To do so, an exact mathematical derivation of the SIR of this system is derived. It becomes obvious that, unlike a cyclic prefixing based system, a zero padding based system is sensitive to residual timing offset.
Resumo:
The last decade has witnessed a major shift towards the deployment of embedded applications on multi-core platforms. However, real-time applications have not been able to fully benefit from this transition, as the computational gains offered by multi-cores are often offset by performance degradation due to shared resources, such as main memory. To efficiently use multi-core platforms for real-time systems, it is hence essential to tightly bound the interference when accessing shared resources. Although there has been much recent work in this area, a remaining key problem is to address the diversity of memory arbiters in the analysis to make it applicable to a wide range of systems. This work handles diverse arbiters by proposing a general framework to compute the maximum interference caused by the shared memory bus and its impact on the execution time of the tasks running on the cores, considering different bus arbiters. Our novel approach clearly demarcates the arbiter-dependent and independent stages in the analysis of these upper bounds. The arbiter-dependent phase takes the arbiter and the task memory-traffic pattern as inputs and produces a model of the availability of the bus to a given task. Then, based on the availability of the bus, the arbiter-independent phase determines the worst-case request-release scenario that maximizes the interference experienced by the tasks due to the contention for the bus. We show that the framework addresses the diversity problem by applying it to a memory bus shared by a fixed-priority arbiter, a time-division multiplexing (TDM) arbiter, and an unspecified work-conserving arbiter using applications from the MediaBench test suite. We also experimentally evaluate the quality of the analysis by comparison with a state-of-the-art TDM analysis approach and consistently showing a considerable reduction in maximum interference.
Resumo:
6th Real-Time Scheduling Open Problems Seminar (RTSOPS 2015), Lund, Sweden.
Resumo:
Postural control deficits are the most disabling aspects of Parkinson's disease (PD), resulting in decreased mobility and functional independence. The aim of this study was to assess the postural control stability, revealed by variables based on the centre of pressure (CoP), in individuals with PD while performing a sit-to-stand-to-sit sequence under single- and dual-task conditions. An observational, analytical and cross-sectional study was performed. The sample consisted of 9 individuals with PD and 9 healthy controls. A force platform was used to measure the CoP displacement and velocity during the sit-to-stand-to-sit sequence. The results were statistically analysed. Individuals with PD required greater durations for the sit-to-stand-to-sit sequence than the controls (p < 0.05). The anteroposterior and mediolateral CoP displacement were higher in the individuals with PD (p < 0.05). However, only the anteroposterior CoP velocity in the stand-to-sit phase (p = 0.006) was lower in the same individuals. Comparing the single- and dual-task conditions in both groups, the duration, the anteroposterior CoP displacement and velocity were higher in the dual-task condition (p < 0.05). The individuals with PD presented reduced postural control stability during the sit-to-stand-to-sit sequence, especially when under the dual-task condition. These individuals have deficits not only in motor performance, but also in cognitive performance when performing the sit-to-stand-to-sit sequence in their daily life tasks. Moreover, both deficits tend to be intensified when two tasks are performed simultaneously.
Resumo:
This study aimed to examine the differences in standing balance between individuals with Parkinson's disease (PD) and subjects without PD (control group), under single and dual-task conditions. A cross-sectional study was designed using a non-probabilistic sample of 110 individuals (50 participants with PD and 60 controls) aged 50 years old and over. The individuals with PD were in the early or middle stages of the disease (characterized by Hoehn and Yahr as stages 1-3). The standing balance was assessed by measuring the centre of pressure (CoP) displacement in single-task (eyes-open/eyes-closed) and dual-task (while performing two different verbal fluency tasks). No significant differences were found between the groups regarding sociodemographic variables. In general, the standing balance of the individuals with PD was worse than the controls, as the CoP displacement across tasks was significantly higher for the individuals with PD (p<0.01), both in anteroposterior and mediolateral directions. Moreover, there were significant differences in the CoP displacement based parameters between the conditions, mainly between the eyes-open condition and the remaining conditions. However, there was no significant interaction found between group and condition, which suggests that changes in the CoP displacement between tasks were not influenced by having PD. In conclusion, this study shows that, although individuals with PD had a worse overall standing balance than individuals without the disease, the impact of performing an additional task on the CoP displacement is similar for both groups.
Resumo:
The aim of this study was to analyze the efficacy of cognitive-motor dual-task training compared with single-task training on balance and executive functions in individuals with Parkinson's disease. Fifteen subjects, aged between 39 and 75 years old, were randomly assigned to the dual-task training group (n = 8) and single-task training group (n = 7). The training was run twice a week for 6 weeks. The single-task group received balance training and the dual-task group performed cognitive tasks simultaneously with the balance training. There were no significant differences between the two groups at baseline. After the intervention, the results for mediolateral sway with eyes closed were significantly better for the dual-task group and anteroposterior sway with eyes closed was significantly better for the single-task group. The results suggest superior outcomes for the dual-task training compared to the single-task training for static postural control, except in anteroposterior sway with eyes closed.