976 resultados para Solid Phase Extraction
Resumo:
In view of the interest in analyzing volatile compounds by SPME, the following five microfibers were tested, polydimethylsiloxane; polyacrylate; polydimethylsiloxane/divinylbenzene; carboxen/polydimethylsiloxane, and carbowax/divinylbenzene, to select the one which presents the best performance for the adsorption of the volatile compounds present in the headspace of acid lime juice samples. Sample stabilization time variations (30 and 60 minutes) were assessed as well the addition of NaCl to the samples. It was verified that the chromatogram with the most adsorbed volatile compounds was obtained with PDMS/DVB microfiber at 30 minutes and the addition of 0.2 g NaCl.
Resumo:
In order to determine the variability of pequi tree (Caryocar brasiliense Camb.) populations, volatile compounds from fruits of eighteen trees representing five populations were extracted by headspace solid-phase microextraction and analyzed by gas chromatography-mass spectrometry. Seventy-seven compounds were identified, including esters, hydrocarbons, terpenoids, ketones, lactones, and alcohols. Several compounds had not been previously reported in the pequi fruit. The amount of total volatile compounds and the individual compound contents varied between plants. The volatile profile enabled the differentiation of all of the eighteen plants, indicating that there is a characteristic profile in terms of their origin. The use of Principal Component Analysis and Cluster Analysis enabled the establishment of markers (dendrolasin, ethyl octanoate, ethyl 2-octenoate and β-cis-ocimene) that discriminated among the pequi trees. According to the Cluster Analysis, the plants were classified into three main clusters, and four other plants showed a tendency to isolation. The results from multivariate analysis did not always group plants from the same population together, indicating that there is greater variability within the populations than between pequi tree populations.
Resumo:
Several automated reversed-phase HPLC methods have been developed to determine trace concentrations of carbamate pesticides (which are of concern in Ontario environmental samples) in water by utilizing two solid sorbent extraction techniques. One of the methods is known as on-line pre-concentration'. This technique involves passing 100 milliliters of sample water through a 3 cm pre-column, packed with 5 micron ODS sorbent, at flow rates varying from 5-10 mUmin. By the use of a valve apparatus, the HPLC system is then switched to a gradient mobile phase program consisting of acetonitrile and water. The analytes, Propoxur, Carbofuran, Carbaryl, Propham, Captan, Chloropropham, Barban, and Butylate, which are pre-concentrated on the pre-column, are eluted and separated on a 25 cm C-8 analytical column and determined by UV absorption at 220 nm. The total analytical time is 60 minutes, and the pre-column can be used repeatedly for the analysis of as many as thirty samples. The method is highly sensitive as 100 percent of the analytes present in the sample can be injected into the HPLC. No breakthrough of any of the analytes was observed and the minimum detectable concentrations range from 10 to 480 ng/L. The developed method is totally automated for the analysis of one sample. When the above mobile phase is modified with a buffer solution, Aminocarb, Benomyl, and its degradation product, MBC, can also be detected along with the above pesticides with baseline resolution for all of the analytes. The method can also be easily modified to determine Benomyl and MBC both as solute and as particulate matter. By using a commercially available solid phase extraction cartridge, in lieu of a pre-column, for the extraction and concentration of analytes, a completely automated method has been developed with the aid of the Waters Millilab Workstation. Sample water is loaded at 10 mL/min through a cartridge and the concentrated analytes are eluted from the sorbent with acetonitrile. The resulting eluate is blown-down under nitrogen, made up to volume with water, and injected into the HPLC. The total analytical time is 90 minutes. Fifty percent of the analytes present in the sample can be injected into the HPLC, and recoveries for the above eight pesticides ranged from 84 to 93 percent. The minimum detectable concentrations range from 20 to 960 ng/L. The developed method is totally automated for the analysis of up to thirty consecutive samples. The method has proven to be applicable to both purer water samples as well as untreated lake water samples.
Resumo:
A simple numerical model which calculates the kinetics of crystallization involving randomly distributed nucleation and isotropic growth is presented. The model can be applied to different thermal histories and no restrictions are imposed on the time and the temperature dependences of the nucleation and growth rates. We also develop an algorithm which evaluates the corresponding emerging grain-size distribution. The algorithm is easy to implement and particularly flexible, making it possible to simulate several experimental conditions. Its simplicity and minimal computer requirements allow high accuracy for two- and three-dimensional growth simulations. The algorithm is applied to explore the grain morphology development during isothermal treatments for several nucleation regimes. In particular, thermal nucleation, preexisting nuclei, and the combination of both nucleation mechanisms are analyzed. For the first two cases, the universal grain-size distribution is obtained. The high accuracy of the model is stated from its comparison to analytical predictions. Finally, the validity of the Kolmogorov-Johnson-Mehl-Avrami model SSSR, is verified for all the cases studied
Resumo:
A new macroporous stationary phase bearing 'tweezer' receptors that exhibit specificity for cholesterol has been constructed from rigid multifunctional vinylic monomers derived from 3,5-dibromobenzoic acid, propargyl alcohol and cholesterol. The synthesis of the novel tweezer monomer that contains two cholesterol receptor arms using palladium mediated Sonogashira methodologies and carbonate couplings is reported. The subsequent co-polymerisation of this tweezer monomer with a range of cross-linking agents via a 'pseudo' molecular imprinting approach afforded a diverse set of macroporous materials. The selectivity and efficacy of these materials for cholesterol binding was assessed using a chromatographic screening process. The optimum macroporous stationary phase material composition was subsequently used to construct monolithic solid phase extraction columns for use in the selective extraction of cholesterol from multi-component mixtures of structurally related steroids.
Resumo:
The solid-phase synthesis of a cyclic peptide containing the 21-residue epitope found in the A-B loop of the Cepsilon3 domain of human immunoglobulin E has been carried out. The key macrocyclization step to form the 65-membered ring is achieved in similar to15% yield via an "on-resin" Sonogashira coupling reaction which concomitantly installs a diphenylacetylene amino acid conformational constraint within the loop.
Resumo:
Headspace solid phase microextraction (HS-SPME) has been used to isolate the headspace volatiles formed during oxidation of oil-in-water emulsions. Qualitative and quantitative analyses with an internal standard were performed by GC-FID. Four sample temperatures for adsorption (30, 40, 50 and 60 C) and adsorption times in the range 10-25 min were tested to determine the conditions for the volatile concentration to reach equilibrium. The optimum conditions were at 50 C for 20 min. The method was applied to monitor changes in volatile composition during oxidation of an o/w emulsion. SPME was a simple, reproducible and sensitive method for the analysis of volatile oxidation products in oil-in-water emulsions. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Tracer gas techniques have been the most appropriate experimental method of determining airflows and ventilation rates in houses. However, current trends to reduce greenhouse gas effects have prompted the need for alternative techniques, such as passive sampling. In this research passive sampling techniques have been used to demonstrate the potential to fulfil these requirements by using solutions of volatile organic compounds (VOCs) and solid phase microextraction (SPME) fibres. These passive sampling techniques have been calibrated against tracer gas decay techniques and measurements from a standard orifice plate. Two constant sources of volatile organic compounds were diffused into two sections of a humidity chamber and sampled using SPME fibres. From a total of four SPME fibres (two in each section), reproducible results were obtained. Emission rates and air movement from one section to the other were predicted using developed algorithms. Comparison of the SPME fibre technique with that of the tracer gas technique and measurements from an orifice plate showed similar results with good precision and accuracy. With these fibres, infiltration rates can be measured over grab samples in a time weighted averaged period lasting from 10 minutes up to several days. Key words: passive samplers, solid phase microextraction fibre, tracer gas techniques, airflow, air infiltration, houses.
Resumo:
The aim of this preliminary work was to present a novel method, suitable to investigate the glass cooling, from melt to solid state, based on a fast, non-usual and easy microwave method. The following glass system xBaO . (100-x)B(2)O(3) (x = 0% and 40%) was selected as an example for this study. The melt was poured inside a piece of waveguide and then, its cooling was monitored by the microwave signal as a function of time. The variations in the signal can provide valuable informations about some structural changes that take place during the cooling stages, such as relaxation processes. This method can be useful to investigate the cooling and heating of other materials, opening new possibilities for investigation of dielectric behavior of materials under high temperatures. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Several conditions have been used in the coupling reaction of stepwise SPPS at elevated temperature (SPPS-ET), but we have elected the following as our first choice: 2.5-fold molar excess of 0.04-0.08 M Boc or Fmoc-amino acid derivative, equimolar amount of DIC/HOBt (1:1)or TBTU/DIPEA(1:3), 25% DMSO/toluene, 60 degrees C, conventional heating. In this study, aimed to further examine enantiomerization under such condition and study the applicability of our protocols to microwave-SPPS, peptides containing L-Ser, L-His, L-Cys and/or L-Met were manually synthesized traditionally, at 60 degrees C using conventional heating and at 60 degrees C using microwave heating. Detailed assessment of all crude peptides (in their intact and/or fully hydrolyzed forms) revealed that, except for the microwave-assisted coupling of L-Cys, all other reactions occurred with low levels of amino acid enantiomerization (<2%). Therefore, herein we (i) provide new evidences that our protocols for SPPS at 60 degrees C using conventional heating are suitable for routine use, (ii) demonstrate their appropriateness for microwave-assisted SPPS by Boc and Fmoc chemistries, (iii) disclose advantages and limitations of the three synthetic approaches employed. Thus, this study complements our past research on SPPS-ET and suggests alternative conditions for microwave-assisted SPPS. Copyright (C) 2009 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
In this article, a novel polydimethylsiloxane/activated carbon (PDMS-ACB) material is proposed as a new polymeric phase for stir bar sorptive extraction (SBSE). The PDMS-ACB stir bar, assembled using a simple Teflon (R)/glass capillary mold, demonstrated remarkable stability and resistance to organic solvents for more than 150 extractions. The SBSE bar has a diameter of 2.36 mm and a length of 2.2 cm and is prepared to contain 92 mu L of polymer coating. This new PDMS-ACB bar was evaluated for its ability to determine the quantity of pesticides in sugarcane juice samples by performing liquid desorption (LD) in 200 mu L of ethyl acetate and analyzing the solvent through gas chromatography coupled with mass spectrometry (GC-MS). A fractional factorial design was used to evaluate the main parameters involved in the extraction procedure. Then, a central composite design with a star configuration was used to optimize the significant extraction parameters. The method used demonstrated a limit of quantification (LOQ) of 0.5-40 mu g/L, depending on the analyte detected; the amount of recovery varied from 0.18 to 49.50%, and the intraday precision ranged from 0.072 to 8.40%. The method was used in the analysis of real sugarcane juice samples commercially available in local markets.
Resumo:
A sensitive assay to identify volatile organic metabolites (VOMs) as biomarkers that can accurately diagnose the onset of breast cancer using non-invasively collected clinical specimens is ideal for early detection. Therefore the aim of this study was to establish the urinary metabolomic profile of breast cancer patients and healthy individuals (control group) and to explore the VOMs as potential biomarkers in breast cancer diagnosis at early stage. Solid-phase microextraction (SPME) using CAR/PDMS sorbent combined with gas chromatography–mass spectrometry was applied to obtain metabolomic information patterns of 26 breast cancer patients and 21 healthy individuals (controls). A total of seventy-nine VOMs, belonging to distinct chemical classes, were detected and identified in control and breast cancer groups. Ketones and sulfur compounds were the chemical classes with highest contribution for both groups. Results showed that excretion values of 6 VOMs among the total of 79 detected were found to be statistically different (p < 0.05). A significant increase in the peak area of (−)-4-carene, 3-heptanone, 1,2,4-trimethylbenzene, 2-methoxythiophene and phenol, in VOMs of cancer patients relatively to controls was observed. Statiscally significant lower abundances of dimethyl disulfide were found in cancer patients. Bioanalytical data were submitted to multivariate statistics [principal component analysis (PCA)], in order to visualize clusters of cases and to detect the VOMs that are able to differentiate cancer patients from healthy individuals. Very good discrimination within breast cancer and control groups was achieved. Nevertheless, a deep study using a larger number of patients must be carried out to confirm the results.
Resumo:
The establishment of potential age markers of Madeira wine is of paramount significance as it may contribute to detect frauds and to ensure the authenticity of wine. Considering the chemical groups of furans, lactones, volatile phenols, and acetals, 103 volatile compounds were tentatively identified; among these, 71 have been reported for the first time in Madeira wines. The chemical groups that could be used as potential age markers were predominantly acetals, namely, diethoxymethane, 1,1-diethoxyethane, 1,1-diethoxy-2-methyl-propane, 1-(1-ethoxyethoxy)-pentane, trans-dioxane and 2-propyl-1,3-dioxolane, and from the other chemical groups, 5-methylfurfural and cis-oak-lactone, independently of the variety and the type of wine. GC × GC-ToFMS system offers a more useful approach to identify these compounds compared to previous studies using GC−qMS, due to the orthogonal systems, that reduce coelution, increase peak capacity and mass selectivity, contributing to the establishment of new potential Madeira wine age markers. Remarkable results were also obtained in terms of compound identification based on the organized structure of the peaks of structurally related compounds in the GC × GC peak apex plots. This information represents a valuable approach for future studies, as the ordered-structure principle can considerably help the establishment of the composition of samples. This new approach provides data that can be extended to determine age markers of other types of wines.