945 resultados para Self-selection
Resumo:
Data visualization algorithms and feature selection techniques are both widely used in bioinformatics but as distinct analytical approaches. Until now there has been no method of measuring feature saliency while training a data visualization model. We derive a generative topographic mapping (GTM) based data visualization approach which estimates feature saliency simultaneously with the training of the visualization model. The approach not only provides a better projection by modeling irrelevant features with a separate noise model but also gives feature saliency values which help the user to assess the significance of each feature. We compare the quality of projection obtained using the new approach with the projections from traditional GTM and self-organizing maps (SOM) algorithms. The results obtained on a synthetic and a real-life chemoinformatics dataset demonstrate that the proposed approach successfully identifies feature significance and provides coherent (compact) projections. © 2006 IEEE.
Resumo:
When composing stock portfolios, managers frequently choose among hundreds of stocks. The stocks' risk properties are analyzed with statistical tools, and managers try to combine these to meet the investors' risk profiles. A recently developed tool for performing such optimization is called full-scale optimization (FSO). This methodology is very flexible for investor preferences, but because of computational limitations it has until now been infeasible to use when many stocks are considered. We apply the artificial intelligence technique of differential evolution to solve FSO-type stock selection problems of 97 assets. Differential evolution finds the optimal solutions by self-learning from randomly drawn candidate solutions. We show that this search technique makes large scale problem computationally feasible and that the solutions retrieved are stable. The study also gives further merit to the FSO technique, as it shows that the solutions suit investor risk profiles better than portfolios retrieved from traditional methods.
Resumo:
To solve multi-objective problems, multiple reward signals are often scalarized into a single value and further processed using established single-objective problem solving techniques. While the field of multi-objective optimization has made many advances in applying scalarization techniques to obtain good solution trade-offs, the utility of applying these techniques in the multi-objective multi-agent learning domain has not yet been thoroughly investigated. Agents learn the value of their decisions by linearly scalarizing their reward signals at the local level, while acceptable system wide behaviour results. However, the non-linear relationship between weighting parameters of the scalarization function and the learned policy makes the discovery of system wide trade-offs time consuming. Our first contribution is a thorough analysis of well known scalarization schemes within the multi-objective multi-agent reinforcement learning setup. The analysed approaches intelligently explore the weight-space in order to find a wider range of system trade-offs. In our second contribution, we propose a novel adaptive weight algorithm which interacts with the underlying local multi-objective solvers and allows for a better coverage of the Pareto front. Our third contribution is the experimental validation of our approach by learning bi-objective policies in self-organising smart camera networks. We note that our algorithm (i) explores the objective space faster on many problem instances, (ii) obtained solutions that exhibit a larger hypervolume, while (iii) acquiring a greater spread in the objective space.
Resumo:
In this paper, a novel approach for character recognition has been presented with the help of genetic operators which have evolved from biological genetics and help us to achieve highly accurate results. A genetic algorithm approach has been described in which the biological haploid chromosomes have been implemented using a single row bit pattern of 315 values which have been operated upon by various genetic operators. A set of characters are taken as an initial population from which various new generations of characters are generated with the help of selection, crossover and mutation. Variations of population of characters are evolved from which the fittest solution is found by subjecting the various populations to a new fitness function developed. The methodology works and reduces the dissimilarity coefficient found by the fitness function between the character to be recognized and members of the populations and on reaching threshold limit of the error found from dissimilarity, it recognizes the character. As the new population is being generated from the older population, traits are passed on from one generation to another. We present a methodology with the help of which we are able to achieve highly efficient character recognition.
Resumo:
Agents inhabiting large scale environments are faced with the problem of generating maps by which they can navigate. One solution to this problem is to use probabilistic roadmaps which rely on selecting and connecting a set of points that describe the interconnectivity of free space. However, the time required to generate these maps can be prohibitive, and agents do not typically know the environment in advance. In this paper we show that the optimal combination of different point selection methods used to create the map is dependent on the environment, no point selection method dominates. This motivates a novel self-adaptive approach for an agent to combine several point selection methods. The success rate of our approach is comparable to the state of the art and the generation cost is substantially reduced. Self-adaptation therefore enables a more efficient use of the agent's resources. Results are presented for both a set of archetypal scenarios and large scale virtual environments based in Second Life, representing real locations in London.
Resumo:
Volunteered Service Composition (VSC) refers to the process of composing volunteered services and resources. These services are typically published to a pool of voluntary resources. Selection and composition decisions tend to encounter numerous uncertainties: service consumers and applications have little control of these services and tend to be uncertain about their level of support for the desired functionalities and non-functionalities. In this paper, we contribute to a self-awareness framework that implements two levels of awareness, Stimulus-awareness and Time-awareness. The former responds to basic changes in the environment while the latter takes into consideration the historical performance of the services. We have used volunteer service computing as an example to demonstrate the benefits that self-awareness can introduce to self-adaptation. We have compared the Stimulus-and Time-awareness approaches with a recent Ranking approach from the literature. The results show that the Time-awareness level has the advantage of satisfying higher number of requests with lower time cost.
Resumo:
This research first evaluated levels and type of herbivory experienced by Centrosema virginianum plants in their native habitat and how florivory affected the pollinator activity. I found that populations of C. virginianum in two pine rockland habitat fragments experienced higher herbivory levels (15% and 22%) compared with plants in the protected study site (8.6%). I found that bees (Hymenoptera) pollinated butterfly pea. Furthermore, I found that florivores had a negative effect in the pollinators visitation rates and therefore in the seed set of the population. ^ I then conducted a study using a greenhouse population of C. virginianum. I applied artificial herbivory treatments: control, mild herbivory and severe herbivory. Flower size, pollen produced, ovules produced and seeds produced were negatively affected by herbivory. I did not find difference in nectar volume and quality by flowers among treatments. Surprisingly, severely damaged plants produced flowers with larger pollen than those from mildly damaged and undamaged plants. Results showed that plants tolerated mild and severe herbivory with 6% and 17% reduction of total fitness components, respectively. However, the investment of resources was not equisexual. ^ A comparison in the ability of siring seeds between large and small pollen was necessary to establish the biological consequence of size in pollen performance. I found that fruits produced an average of 18.7 ± 1.52 and 17.7 ± 1.50 from large and small pollen fertilization respectively. These findings supported a pollen number-size trade-off in plants under severe herbivory treatments. As far as I know, this result has not previously been reported. ^ Lastly, I tested how herbivory influenced seed abortion patterns in plants, examining how resources are allocated on different regions within fruits under artificial herbivory treatments. I found that self-fertilized fruits had greater seed abortion rates than cross-fertilized fruits. The proportion of seeds aborted was lower in the middle regions of the fruits in cross-fertilized fruits, producing more vigorous progeny. Self-fertilized fruits did not show patterns of seedling vigor. I also found that early abortion was higher closer to the peduncular end of the fruits. Position of seeds within fruits could be important in the seed dispersion mechanism characteristic of this species. ^
Resumo:
County jurisdictions in America are increasingly exercising self-government in the provision of public community services through the context of second order federalism. In states exercising this form of contemporary governance, county governments with "reformed" policy-making structures and professional management practices, have begun to rival or surpass municipalities in the delivery of local services with regional implications such as environmental protection (Benton 2002, 2003; Marando and Reeves, 1993). ^ The voter referendum, a form of direct democracy, is an important component of county land preservation and environmental protection governmental policies. The recent growth and success of land preservation voter referendums nationwide reflects an increase in citizen participation in government and their desire to protect vacant land and its natural environment from threats of over-development, urbanization and sprawl, loss of open space and farmland, deterioration of ecosystems, and inadequate park and recreational amenities. ^ The study's design employs a sequential, mixed method. First, a quantitative approach employs the Heckman two-step model. It is fitted with variables for the non-random sample of 227 voter referendum counties and all non-voter referendum counties in the U.S. from 1988 to 2009. Second, the qualitative data collected from the in-depth investigation of three South Florida county case studies with twelve public administrator interviews is transformed for integration with the quantitative findings. The purpose of the qualitative method is to complement, explain and enrich the statistical analysis of county demographic, socio-economic, terrain, regional, governance and government, political preference, environmentalism, and referendum-specific factors. ^ The research finds that government factors are significant in terms of the success of land preservation voter referendums; more specifically, the presence of self-government authority (home rule charter), a reformed structure (county administrator/manager or elected executive), and environmental interest groups. In addition, this study concludes that successful counties are often located coastal, exhibit population and housing growth, and have older and more educated citizens who vote democratic in presidential elections. The analysis of case study documents and public administrator interviews finds that pragmatic considerations of timing, local politics and networking of regional stakeholders are also important features of success. Further research is suggested utilizing additional public participation, local government and public administration factors.^
Resumo:
With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance.
Resumo:
With the developments in computing and communication technologies, wireless sensor networks have become popular in wide range of application areas such as health, military, environment and habitant monitoring. Moreover, wireless acoustic sensor networks have been widely used for target tracking applications due to their passive nature, reliability and low cost. Traditionally, acoustic sensor arrays built in linear, circular or other regular shapes are used for tracking acoustic sources. The maintaining of relative geometry of the acoustic sensors in the array is vital for accurate target tracking, which greatly reduces the flexibility of the sensor network. To overcome this limitation, we propose using only a single acoustic sensor at each sensor node. This design greatly improves the flexibility of the sensor network and makes it possible to deploy the sensor network in remote or hostile regions through air-drop or other stealth approaches. Acoustic arrays are capable of performing the target localization or generating the bearing estimations on their own. However, with only a single acoustic sensor, the sensor nodes will not be able to generate such measurements. Thus, self-organization of sensor nodes into virtual arrays to perform the target localization is essential. We developed an energy-efficient and distributed self-organization algorithm for target tracking using wireless acoustic sensor networks. The major error sources of the localization process were studied, and an energy-aware node selection criterion was developed to minimize the target localization errors. Using this node selection criterion, the self-organization algorithm selects a near-optimal localization sensor group to minimize the target tracking errors. In addition, a message passing protocol was developed to implement the self-organization algorithm in a distributed manner. In order to achieve extended sensor network lifetime, energy conservation was incorporated into the self-organization algorithm by incorporating a sleep-wakeup management mechanism with a novel cross layer adaptive wakeup probability adjustment scheme. The simulation results confirm that the developed self-organization algorithm provides satisfactory target tracking performance. Moreover, the energy saving analysis confirms the effectiveness of the cross layer power management scheme in achieving extended sensor network lifetime without degrading the target tracking performance.
Resumo:
This article is protected by copyright. All rights reserved. Acknowledgements This study was funded by a BBSRC studentship (MAW) and NERC grants NE/H00775X/1 and NE/D000602/1 (SBP). The authors are grateful to Mario Röder and Keliya Bai for fieldwork assistance, and all estate owners, factors and keepers for access to field sites, most particularly MJ Taylor and Mike Nisbet (Airlie), Neil Brown (Allargue), RR Gledson and David Scrimgeour (Delnadamph), Andrew Salvesen and John Hay (Dinnet), Stuart Young and Derek Calder (Edinglassie), Kirsty Donald and David Busfield (Glen Dye), Neil Hogbin and Ab Taylor (Glen Muick), Alistair Mitchell (Glenlivet), Simon Blackett, Jim Davidson and Liam Donald (Invercauld), Richard Cooke and Fred Taylor† (Invermark), Shaila Rao and Christopher Murphy (Mar Lodge), and Ralph Peters and Philip Astor (Tillypronie). Data accessibility • Genotype data (DataDryad: doi:10.5061/dryad.4t7jk) • Metadata (information on sampling sites, phenotypes and medication regimen) (DataDryad: doi:10.5061/dryad.4t7jk)
Resumo:
Funded by Health Education England (HEE) Office for Fair Access (OFFA)
Resumo:
Key life history traits such as breeding time and clutch size are frequently both heritable and under directional selection, yet many studies fail to document micro-evolutionary responses. One general explanation is that selection estimates are biased by the omission of correlated traits that have causal effects on fitness, but few valid tests of this exist. Here we show, using a quantitative genetic framework and six decades of life-history data on two free-living populations of great tits Parus major, that selection estimates for egg-laying date and clutch size are relatively unbiased. Predicted responses to selection based on the Robertson-Price Identity were similar to those based on the multivariate breeder’s equation, indicating that unmeasured covarying traits were not missing from the analysis. Changing patterns of phenotypic selection on these traits (for laying date, linked to climate change) therefore reflect changing selection on breeding values, and genetic constraints appear not to limit their independent evolution. Quantitative genetic analysis of correlational data from pedigreed populations can be a valuable complement to experimental approaches to help identify whether apparent associations between traits and fitness are biased by missing traits, and to parse the roles of direct versus indirect selection across a range of environments.
Resumo:
This paper focuses on two basic issues: the anxiety-generating nature of the interpreting task and the relevance of interpreter trainees’ academic self-concept. The first has already been acknowledged, although not extensively researched, in several papers, and the second has only been mentioned briefly in interpreting literature. This study seeks to examine the relationship between the anxiety and academic self-concept constructs among interpreter trainees. An adapted version of the Foreign Language Anxiety Scale (Horwitz et al., 1986), the Academic Autoconcept Scale (Schmidt, Messoulam & Molina, 2008) and a background information questionnaire were used to collect data. Students’ t-Test analysis results indicated that female students reported experiencing significantly higher levels of anxiety than male students. No significant gender difference in self-concept levels was found. Correlation analysis results suggested, on the one hand, that younger would-be interpreters suffered from higher anxiety levels and students with higher marks tended to have lower anxiety levels; and, on the other hand, that younger students had lower self-concept levels and higher-ability students held higher self-concept levels. In addition, the results revealed that students with higher anxiety levels tended to have lower self-concept levels. Based on these findings, recommendations for interpreting pedagogy are discussed.
Resumo:
As part of the ultrafast charge dynamics initiated by high intensity laser irradiations of solid targets,high amplitude EM pulses propagate away from the interaction point and are transported along anystalks and wires attached to the target. The propagation of these high amplitude pulses along a thinwire connected to a laser irradiated target was diagnosed via the proton radiography technique,measuring a pulse duration of 20 ps and a pulse velocity close to the speed of light. The strongelectric field associated with the EM pulse can be exploited for controlling dynamically the protonbeams produced from a laser-driven source. Chromatic divergence control of broadband laser drivenprotons (upto 75% reduction in divergence of >5 MeV protons) was obtained by winding the supportingwire around the proton beam axis to create a helical coil structure. In addition to providingfocussing and energy selection, the technique has the potential to post-accelerate the transiting protonsby the longitudinal component of the curved electric field lines produced by the helical coil lens.