931 resultados para Rice Husk Biochar
Resumo:
Rice ragged stunt virus (RRSV) is an important pathogen of rice affecting its cultivation in South and South East Asia. An approach based on pathogen derived resistance (PDR) was used to produce RRSV resistant rice cultivars. Sequences from the coding region of RRSV genome segments 7 and 10 (non-structural genes), and 5, 8 and 9 (structural genes) were placed in sense or antisense orientation behind the plant expression promoters CaMV35S, RolC, Ubil, Actl and RBTV. Rice cultivars Taipei 309 and Chinsurah Boro II were transformed by biolistic and/or Agrobacterium-mediated delivery of one or more of these PDR gene constructs. A large number of transgenic lines were produced from calli derived from mature or immature embryos, co-bombarded with the marker gene hph encoding hygromycin resistance and RRSV PDR genes or co-cultivated with strains having the binary vector containing these two genes. Both Mendelian and non-Mendelian segregations were observed in transgenic progeny, especially with transgenic lines produced by biolistics. Preliminary tests conducted in China on selected transgenic lines indicate that plants with RRSV segment 5 antisense PDR gene confer RRSV resistance.
Resumo:
Two transgenic callus lines of rice, stably expressing a β-glucuronidase (GUS) gene, were supertransformed with a set of constructs designed to silence the resident GUS gene. An inverted-repeat (i/r) GUS construct, designed to produce mRNA with self-complementarity, was much more effective than simple sense and antisense constructs at inducing silencing. Supertransforming rice calluses with a direct-repeat (d/r) construct, although not as effective as those with the i/r construct, was also substantially more effective in silencing the resident GUS gene than the simple sense and antisense constructs. DNA hybridisation analyses revealed that every callus line supertransformed with either simple sense or antisense constructs, and subsequently showing GUS silencing, had the silence-inducing transgenes integrated into the plant genome in inverted-repeat configurations. The silenced lines containing i/r and d/r constructs did not necessarily have inverted-repeat T-DNA insertions. There was significant methylation of the GUS sequences in most of the silenced lines but not in the unsilenced lines. However, demethylation treatment of silenced lines with 5-azacytidine did not reverse the post-transcriptional gene silencing (PTGS) of GUS. Whereas the levels of RNA specific to the resident GUS gene were uniformly low in the silenced lines, RNA specific to the inducer transgenes accumulated to a substantial level, and the majority of the i/r RNA was unpolyadenylated. Altogether, these results suggest that both sense- and antisense-mediated gene suppression share a similar molecular basis, that unpolyadenylated RNA plays an important role in PTGS, and that methylation is not essential for PTGS.
Resumo:
We report the first successful Agrobacterium-mediated transformation of Australian elite rice cultivars, Jarrah and Amaroo, using binary vectors with our improved promoters and selectable markers. Calli derived from mature embryos were used as target tissues. The binary vectors contained hph (encoding hygromycin resistance) or bar (encoding herbicide resistance) as the selectable marker gene and uidA (gus) or sgfpS65T as the reporter gene driven by different promoters. Use of Agrobacterium strain AGL1 carrying derivatives of an improved binary vector pWBVec8, wherein the CaMV35S driven hph gene is interrupted by the castor bean catalase 1 intron, produced a 4-fold higher number of independent transgenic lines compared to that produced with the use of strain EHA101 carrying the binary vector pIG121-Hm wherein the CaMV35S driven hph is intronless. The Ubiquitin promoter produced 30-fold higher β-glucuronidase (GUS) activity (derivatives of binary vector pWBVec8) in transgenic plants than the CaMV35S promoter (pIG121-Hm). The two modified SCSV promoters produced GUS activity comparable to that produced by the Ubiquitin promoter. Progeny analysis (R1) for hygromycin resistance and GUS activity with selected lines showed both Mendelian and non-Mendelian segregation. Lines showing very high levels of GUS activity in T0 showed a reduced level of GUS activity in their T1 progeny, while lines with moderate levels of GUS activity showed increased levels in T1 progeny. Stable heritable green fluorescent protein (GFP) expression was also observed in few transgenic plants produced with the binary vector pTO134 which had the CaMV35S promoter-driven selectable marker gene bar and a modified CaMV35S promoter-driven reporter gene sgfpS65T.
Resumo:
The complete nucleotide sequence of genome segment S4 of rice ragged stunt oryzavirus (RRSV, Thai-isolate) was determined. The 3823 bp sequence contains two large open reading frames (ORFs). ORF1, spanning nucleotides 12 to 3776, is capable of encoding a protein of M(r) 141,380 (P4a). The P4a amino acid sequence predicted from the nucleotide sequence contains sequence motifs conserved in RNA-dependent RNA polymerases (RDRPs). When compared for evolutionary relationships with RDRPs of other reoviruses using the amino acid sequences around the conserved GDD motif, P4a was shown to be more related to Nilaparvata lugens reovirus and reovirus serotype 3 than to rice dwarf phytoreovirus, bovine rotavirus or bluetongue virus. The ORF2, spanning nucleotides 491 to 1468, is out of frame with ORF1 and is capable of encoding a protein of 36, 920 (P4b). Coupled in vitro transcription-translation from cloned ORF2 in wheat germ extract confirmed the existence of ORF2 but in vivo production and possible function of P4b is yet to be determined.
Resumo:
The nucleotide sequences of genome segments S7 and S10 of a Thai-isolate of rice ragged stunt virus (RRSV) were determined. The 1938 bp S7 sequence contains a single large open reading frame (ORF) spanning nucleotides 20 to 1 843 that is predicted to encode a protein of M(r) 68 025. The 1 162 bp S10 sequence has a major ORF spanning nucleotides 142 to 1 032 that is predicted to encode a protein of M(r) 32364. This S10 ORF is preceded by a small ORF (nt 20-55) which is probably a minicistron. Coupled in vitro transcription-translation from the two major ORFs gave protein products of the expected sizes. However, no protein was visualised from S10 when the small ORF sequence was included. Proteins were expressed in Escherichia coli from the full length ORF of S7 (P7) and from a segment of the S10 ORF (P10) fused to the ORF of glutathione S-transferase (GST). Neither fusion protein was recognised by polyclonal antibodies raised against RRSV particles. Furthermore, polyclonal antibodies raised against GST-P7 fusion protein did not recognise any virion structural polypeptides. These data strongly suggest that the proteins P7 and P10 do not form part of RRSV particle. This is further supported by observed sequence homology (though very weak) of predicted.
Resumo:
The effectiveness of different promoters for use in Indica rice transformation was compared. Plasmids encoding the Escherichia coli uidA (gus) gene under the control of CaMV 35S, Emu, Act1 or Ubi1 promoters were delivered into cell suspension cultures by particle bombardment. Transient gene expression, 48 h after delivery, was greatest from plasmids utilising the constitutive promoters, Act1 and Ubi1. Gene expression in stably transformed tissue was examined by bombarding embryogenic Indica rice calli with a pUbil-gus plasmid and a plasmid containing either the selectable marker gene, hph, which confers hygromycin resistance, or bar, which confers resistance to the herbicide phosphinothricin (BASTA) each under the control of the CaMV 35S, Emu, Act1 or the Ubi1 promoters. The bombarded calli were placed on the appropriate selection media and stained for GUS activity at 1 day, 3 weeks and 5 weeks after shooting. Callus bombarded with the pUbi1-hph or the pEmu-hph constructs gave a dramatic increase in the size of the GUS staining areas with time. No such increase in the size of GUS staining areas was observed in calli co-bombarded with pUbi1-gus and any of the bar containing constructs. Co-bombardment of calli with either the pEmu-hph or pUbi1-hph construct and a virus minor coat protein (cp) gene construct resulted in many fertile transgenic Indica rice plants, containing one to eight copies of both the hph and cp genes. These genes were stably inherited by the T 1 generation.
Resumo:
The nucleotide sequence of DNA complementary to rice ragged stunt oryzavirus (RRSV) genome segment 8 (S8) of an isolate from Thailand was determined. RRSV S8 is 1 914 bp in size and contains a single large open reading frame (ORF) spanning nucleotides 23 to 1 810 which is capable of encoding a protein of M(r) 67 348. The N-terminal amino acid sequence of a ~43K virion polypeptide matched to that inferred for an internal region of the S8 coding sequence. These data suggest that the 43K protein is encoded by S8 and is derived by a proteolytic cleavage. Predicted polypeptide sizes from this possible cleavage of S8 protein are 26K and 42K. Polyclonal antibodies raised against a maltose binding protein (MBP)-S8 fusion polypeptide (expressed in Escherichia coli) recognised four RRSV particle associated polypeptides of M(r) 67K, 46K, 43K and 26K and all except the 26K polypeptide were also highly immunoreactive to polyclonal antibodies raised against purified RRSV particles. Cleavage of the MBP-S8 fusion polypeptide with protease Factor X produced the expected 40K MBP and two polypeptides of apparent M(r) 46K and 26K. Antibodies to purified RRSV particles reacted strongly with the intact fusion protein and the 46K cleavage product but weakly to the 26K product. Furthermore, in vitro transcription and translation of the S8 coding region revealed a post-translational self cleavage of the 67K polypeptide to 46K and 26K products. These data indicate that S8 encodes a structural polypeptide, the majority of which is auto- catalytically cleaved to 26K and 46K proteins. The data also suggest that the 26K protein is the self cleaving protease and that the 46K product is further processed or undergoes stable conformational changes to a ~43K major capsid protein.
Resumo:
The complete nucleotide sequence of the genome segment 5 (S5) of a Thai isolate of rice ragged stunt virus (RRSV) was determined. The 2682 nucleotide sequence contains a single long open reading frame capable of encoding a polypeptide with a molecular mass of ~91 kDa. Polypeptides encoded by various truncated cDNAs of S5 were expressed using the pGEX fusion protein vector and the highest level of fusion protein was obtained from a construct encoding a hydrophilic region of S5 protein. Antibodies raised against this fusion protein recognized a minor polypeptide, with a molecular mass of ~ 91 kDa, that was present in purified preparations of RRSV particles, infected insect vectors and infected rice plants. This indicates that RRSV S5 encodes a minor structural protein. Comparing the RRSV S5 sequence with sequences of other reo-viruses did not reveal any significant sequence similarities.
Resumo:
Programmed cell death-associated genes, especially antiapoptosis-related genes have been reported to confer tolerance to a wide range of biotic and abiotic stresses in dicotyledonous plants such as tobacco (Nicotiana tabacum L.) and tomato (Solanum lycopersicum L.). This is the first time the antiapoptotic gene SfIAP was transformed into a monocotyledonous representative: rice (Oryza sativa L.). Transgenic rice strains expressing SfIAP were generated by the Agrobacterium-mediated transformation method and rice embryogenic calli, and assessed for their ability to confer tolerance to salt stress at both the seedling and reproductive stages using a combination of molecular, agronomical, physiological and biochemical techniques. The results show that plants expressing SfIAP have higher salt tolerance levels in comparison to the wild-type and vector controls. By preventing cell death at the onset of salt stress and maintaining the cell membrane’s integrity, SfIAP transgenic rice plants can retain plant water status, ion homeostasis, photosynthetic efficiency and growth to combat salinity successfully.
Resumo:
Rice, an important crop that feeds more than half of the world's population is very sensitive to salinity stress – a growing problem affecting crop production globally. This PhD study addressed this problem by manipulating the programmed cell death pathways in rice resulting in significant enhancement of salinity stress tolerance. The impact of this work is that farmers would be in a position to grow rice containing such a trait in environments where salinisation of the soil exists, thereby addressing food security needs.
Resumo:
Following microprojectile mediated delivery of a plasmid construct (pAHC-25) encoding bar (bialophos resistance) gene into five-day-old scutellar calli derived from mature embryos, the effectiveness of selection procedure for bar-gene expressing tissue was compared for two indica rice cultivars (IR-64 and Karnal Local). While IR-64 transformants could be selected through the generally used semi-solid selection medium, the same procedure was not effective in the basmati cultivar Karnal Local. In the latter case, while lower concentrations (2–4 mg 1−1) of the selective agent phosphinothricin (PPT) yielded only escapes, higher concentrations (6–8 mg l−1) inhibited proliferation of transformed as well as untransformed sectors. For Karnal Local, a liquid medium based selection system was successfully utilized for recovering transformed sectors and, eventually, regenerants. The study demonstrates the generation of transformants of two elite indica cultivars using the environment-independent system of mature embryos from seeds.
Resumo:
In this study we use region-level panel data on rice production in Vietnam to investigate total factor productivity (TFP) growth in the period since reunification in 1975. Two significant reforms were introduced during this period, one in 1981 allowing farmers to keep part of their produce, and another in 1987 providing improved land tenure. We measure TFP growth using two modified forms of the standard Malmquist data envelopment analysis (DEA) method, which we have named the Three-year-window (TYW) and the Full Cumulative (FC) methods. We have developed these methods to deal with degrees of freedom limitations. Our empirical results indicate strong average TFP growth of between 3.3 and 3.5 per cent per annum, with the fastest growth observed in the period following the first reform. Our results support the assertion that incentive related issues have played a large role in the decline and subsequent resurgence of Vietnamese agriculture.
Resumo:
Adaptation to climate change has become an important policy question in recent years. Agriculture is an economic activity that is most sensitive to climate change. We evaluate the dynamic effects of productivity change and individual efforts to adapt to climate change. Adaptation actions in agriculture are evaluated to determine how the climate affects production efficiency. In this paper, we use the bi-directional distance function method to measure Japanese rice production loss due to climate. We find that (1) accumulated precipitation has the greatest effect on rice production efficiency and (2) the climate effect on rice production efficiency decreases over time. Our results empirically support the benefit of the adaptation approach.
Resumo:
This article examines a series of controversies within the life sciences over data sharing. Part 1 focuses upon the agricultural biotechnology firm Syngenta publishing data on the rice genome in the journal Science, and considers proposals to reform scientific publishing and funding to encourage data sharing. Part 2 examines the relationship between intellectual property rights and scientific publishing, in particular copyright protection of databases, and evaluates the declaration of the Human Genome Organisation that genomic databases should be global public goods. Part 3 looks at varying opinions on the information function of patent law, and then considers the proposals of Patrinos and Drell to provide incentives for private corporations to release data into the public domain.