988 resultados para RECONSTRUCTIONS
Resumo:
Bodenformen an der Sohle von Flüssen, Küstenzonen und flachen Schelfen sind wichtige skalenübergreifende Elemente der Küstendynamik in ihren Eigenschaften als Transportkörper von Sedimenten und ihrer Wirkung auf die Strömungsdynamik als Rauheitselemente. Neben vielen neueren Studien über die Entstehung, Gestalt und Dynamik von Bodenformen in vergleichsweise kleinen Untersuchungsgebieten ist die Arbeit von ULRICH (1973) über die Verteilung von Bodenformen in der Deutschen Bucht bis heute die einzige verfügbare zusammenhängende Darstellung für die deutsche Nordseeküste. Die analogen Karten und die Darstellung der Klassifizierung in Buchstabenkürzeln macht sie für heutige quantitative Analysen schwer zugänglich. Hier wurden diese Karten digitalisiert und Eigenschaften der Bodenformen rekonstruiert und interpretiert. Das Ergebnis ist eine Zusammenstellung digitaler Karten eines vollständigen - und eines auf steile, hydrodynamisch wirksame Bodenformen reduzierten Datensatzes der Minimal, Maximalund Mittelwerte von Höhen, Längen und Steilheiten von Bodenformen in der Deutschen Bucht. Die Datensätze stehen der Allgemeinheit in der Datenbank Pangaea zur Verfügung. Bedforms in rivers, coastal zones and shallow shelf seas are important cross-scale elements of coastal dynamics in their function as sediment transport agent and in their effect on the flow dynamics as roughness elements. In addition to many recent studies on the origin, shape and dynamics of bedforms in relatively small study areas the work of ULRICH (1973) on the classification of bedform types in the German Bight is until today the only available coherent representation of the spatial distribution of bedforms for the whole German coastal sea. The analogue maps and the coded classification makes them difficult to access for quantitative analyses. Here these maps were digitized and properties of the bedforms were reconstructed and interpreted. Resulting digital maps of the whole and a reduced dataset on steep bedforms contain minimum, maximum and average values of heights, lengths and steepness of bedform types in the German Bight. The data sets are available to the public in the database Pangaea.
Resumo:
Paleotemperature estimates calculated by the SIMMAX Modern Analog Technique are presented for two gravity cores from the Rio Grande Rise, one from the Brazil Slope, and one from the Ceara Rise. The estimates are based on comparisons between modern and fossil planktonic foraminiferal assemblages and were carried out on samples from Quaternary sediments. Estimated warm-season temperatures from the Rio Grande Rise (at approx. 30° S) range from around 19°C to 24°C, with some coincidence of warm peaks with interglacial stages. The temperature estimates (also warm-season) from the more tropical Brazil Slope (at approx. 8° S) and Ceara Rise (at approx. 4° N) cores are more stable, remaining between 26°C and 28°C throughout most of their lengths. This fairly stable situation in the tropical western Atlantic is interrupted in oxygen isotope stage 6 by a significant drop of 2-3°C in both of these cores. Temperature estimates from the uppermost samples in all cores compare very well to the modern-day measured values. Affinities of some foraminiferal species for warmer or cooler surface temperatures are identified within the temperature range of the examined samples based on their abundance values. Especially notable among the warmer species are, Globorotalia menardii, Globigerinita glutinata, Globigerinoides ruber, and Globigerinoides sacculifer. Species indicative of cooler surface temperatures include Globorotalia inflata, Globigerina bulloides, Neogloboquadrina pachyderma, and Globigerina falconensis. A cluster analysis was carried out to assist in understanding the degree of variation which occurs in the foraminiferal assemblages, and how temperature differences influence the faunal compositions of the samples. It is demonstrated that fairly similar samples may have unexpectedly different estimated temperatures due to small differences in key species and, conversely, quite different assemblages can result in similar or identical temperature estimates which confirms that other parameters than just temperature affect faunal content.
Resumo:
In this study we reconstruct quantitatively the Middle to Upper Miocene climate evolution in the southern Forecarpathian Basin (Central Paratethys area, Northwest Bulgaria) by applying the coexistence approach to 101 well-dated palynofloras isolated from three cores. The climatic evolution is compared with changes in vegetation and palaeogeography. The Middle Miocene was a period of a subtropical/warm-temperate humid climate with mean annual temperature (MAT) between 16 and 18°C and mean annual precipitation (MAP) between 1100 and 1300 mm. Thereby, during the entire Middle Miocene a trend of slightly decreasing temperatures is observed and only small climate fluctuations occur which are presumably related to palaeogeographic reorganisations. The vegetation shows a corresponding trend with a decrease in abundance of palaeotropic and thermophilous elements. The Upper Miocene is characterised by more diverse climatic conditions, probably depending on palaeogeographic and global climatic transformations. The beginning of this period is marked by a slight cooling and a significant drying of the climate, with MAT 13.3-17°C and MAP 652-759 mm. After that, fluctuations of all palaeoclimate parameters occur displaying cycles of humid/dryer and warmer/cooler conditions, which are again well reflected in the vegetation. Our study provides a first quantitative model of the Middle-Upper Miocene palaeoclimate evolution in Southeastern Europe and is characterised by a relatively high precision and resolution with respect to the climate data and stratigraphy.
Resumo:
Diatom assemblages from ODP Leg 177 sites 1093, 1094 and core PS2089-2, from the present Antarctic sea ice free zone and close to the Polar Front, were analyzed in order to reconstruct the climate development around the Mid-Brunhes Event 400 000 yr ago, as reflected by summer sea surface temperature (SSST) and sea ice distribution. Dense sample spacing allows a mean temporal resolution during Marine Isotope Stage (MIS) 11 (423-362 ka) of 300-400 yr. SSST values were estimated from diatom assemblages using a transfer function technique. The distribution pattern of sea ice diatoms indicates that the present-day ice free Antarctic Zone was seasonally covered by sea ice during the cold MIS 12 and MIS 10. These glacial periods are characterized by sea ice fluctuations with a periodicity of 3 and 1.85 kyr, suggesting the occurrence of Dansgaard-Oeschger-style millennial-scale oscillations in the Atlantic sector of the Southern Ocean during the glacial stages MIS 12 and MIS 10. Termination V (MIS 12/11) is characterized by a distinct temperature increase of 4-6°C, intersected especially at the southern site 1094 and core PS2089-2 by two distinct cooling events reminiscent of the Younger Dryas, which are associated with a northward shift of the winter sea ice edge in the Antarctic Zone. The SSST record is characterized by distinct temperature intervals bounded by stepwise, rapid changes. Maximum temperatures were reached during Termination V and the early MIS 11, exceeding modern values by 2°C over a period of 8 kyr. This pattern indicates a very early response of the Southern Ocean to global climate on Milankovitch-driven climate variability. The SSST optimum is marked by millennial-scale temperature oscillations with an amplitude of ca. 1°C and periodicities of ca. 1.85 and 1.47 kyr, probably reflecting changes in the ocean circulation system. The SSSTs during the MIS 11 temperature optimum do not exceed values obtained from other interglacial optima such as the early periods of MIS 5 or MIS 1 from the Antarctic Zone. However, the total duration of the warmest period was distinctly longer than observed from other interglacials. The comparison of the South Atlantic climate record with a high-resolution record from ODP Leg 162, site 980from the North Atlantic shows a strong conformity in the climate development during the studied time interval.
Resumo:
The derivation of a detailed sea-surface paleotemperature curve for the middle Miocene-Holocene (10-0 Ma) from ODP Site 811 on the Queensland Plateau, northeast Australia, has clarified the role of sea-surface temperature fluctuations as a control on the initiation and development of the extensive carbonate platforms of this region. This curve was derived from isotopic analyses of the planktonic foraminifer Globigerinoides ruber, and converted to temperature using the surface-water paleotemperature equation accounting for variations in global ice volume. The accuracy of these data were confirmed by derivation of paleotemperatures using the water column isotopic gradient (Delta delta18O), corrected for salinity and variations in seafloor water mass temperature. Results indicate that during this period surface-water temperatures were, on average, greater than the minimum required for tropical reef growth (20°C; Veron, 1986), with the exception of the late Miocene and earliest early Pliocene (10-4.9 Ma), when there were repeated intervals of temperatures between 18-20°C. Tropical reef growth on the Queensland Plateau was extensive from the early to early middle Miocene (~21-13 Ma), after which reef development began to decline. A lowstand near 11 Ma probably exposed shallower portions of the plateau; after re-immersion near 7 Ma, the areal extent of reef development was greatly reduced (~ 50%). Paleotemperature data from Site 811 indicate that decreased sea-surface temperatures were likely to have been instrumental in reducing the area of active reef growth on the Queensland Plateau. Reduced reefal growth rates continued until the late Pliocene or Quaternary, despite the increase of average sea-surface paleotemperatures to 22-23°C. Studies on modern corals show that when sea-surface temperatures are below ~24°C, as they were from the late Miocene to the Pleistocene off northeast Australia, corals are stressed and growth rates are greatly reduced. Consequently, when temperatures are in this range, corals have difficulty keeping pace with subsidence and changing environmental factors. In the late Pliocene, sedimentation rates increased due to increases in non-reefal carbonate production and falling sea levels. It was not until the mid-Quaternary (0.6-0.7 Ma) that sea-surface paleotemperatures increased above 24°C as a result of the formation of a western Coral Sea warm water pool. Because of age discrepancies, it is unclear exactly when an effective barrier developed on the central Great Barrier Reef; the formation of the warm water pool was likely to have either assisted the formation of this barrier and/or permitted increased coral growth rates. Fluctuations in sea-surface temperature can account for much of the observed spatial and temporal variations of reef growth and carbonate platform distribution off northeast Australia, and therefore we conclude that paleotemperature variations are a critical control on the development of carbonate platforms, and must be considered an important cause of ancient platform "drowning".
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.
Resumo:
Recent research suggests that future decreases in the carbonate saturation state of surface seawater associated with the projected build-up of atmospheric CO2 could cause a global decline in coral reef-building capacity. Whether significant reductions in coral calcification are underway is a matter of considerable debate. Multicentury records of skeletal calcification extracted from massive corals have the potential to reconstruct the progressive effect of anthropogenic changes in carbonate saturation on coral reefs. However, early marine aragonite cements are commonly precipitated from pore waters in the basal portions of massive coral skeletons and, if undetected, could result in apparent nonlinear reductions in coral calcification toward the present. To address this issue, we present records of coral skeletal density, extension rate, calcification rate, δ13C, and δ18O for well preserved and diagenetically altered coral cores spanning ∼1830-1994 A.D. at Ningaloo Reef Marine Park, Western Australia. The record for the pristine coral shows no significant decrease in skeletal density or δ13C indicative of anthropogenic changes in carbonate saturation state or δ13C of surface seawater (oceanic Suess effect). In contrast, progressive addition of early marine inorganic aragonite toward the base of the altered coral produces an apparent ∼25% decrease in skeletal density toward the present, which misleadingly matches the nonlinear twentieth century decrease in coral calcification predicted by recent modeling and experimental studies. In addition, the diagenetic aragonite is enriched in 13C, relative to coral aragonite, resulting in a nonlinear decrease in δ13C toward the present that mimics the decrease in δ13C expected from the oceanic Suess effect. Taken together, these diagenetic changes in skeletal density and δ13C could be misinterpreted to reflect changes in surface-ocean carbonate saturation state driven by the twentieth century build-up of atmospheric CO2. Copyright 2004 by the American Geophysical Union.
Resumo:
This dataset contains the collection of available published paired Uk'37 and Tex86 records spanning multi-millennial to multi-million year time scales, as well as a collection of Mg/Ca-derived temperatures measured in parallel on surface and subsurface dwelling foraminifera, both used in the analyses of Ho and Laepple, Nature Geoscience 2016. As the signal-to-noise ratios of proxy-derived Holocene temperatures are relatively low, we selected records that contain at least the last deglaciation (oldest sample >18kyr BP).
Stable isotope ratios and paleoceanaographic reconstructions from sediment cores 80-548 and 161-978A
Resumo:
Largely continuous millennial-scale records of benthic d18O, Mg/Ca-based temperature, and salinity variations in bottom waters were obtained from Deep Sea Drilling Project Site 548 (eastern Atlantic continental margin south of Ireland, 1250 m water depth) for the period between 3.7 and 3.0 million years ago. This site monitored mid-Pliocene changes in Mediterranean Outflow Water (MOW) documented by continuously high Nd values between -10.7 and -9. Site 978 (Alboran Sea, 1930 m water depth) provides a complementary record of bottom water variability in the westernmost Mediterranean Sea, which is taken to represent MOW composition at its source. Both sites are marked by a singular and persistent rise in bottom water salinities by 0.7-1.4 psu and in densities by ~1 kg m-3 from 3.5 to 3.3 Ma, which is matched by an average 3 °C increase in bottom water temperatures at Site 548. This event suggests the onset of strongly enhanced deep-water convection in the Mediterranean Sea and a related strengthened MOW flow, which implies a major aridification of the Mediterranean source region. In harmony with model suggestions, the enhanced MOW flow has possibly intensified Upper North Atlantic Deep Water formation.
Resumo:
Reconstructions of eolian dust accumulation in northwest African margin sediments provide important continuous records of past changes in atmospheric circulation and aridity in the region. Existing records indicate dramatic changes in North African dust emissions over the last 20 ka, but the limited spatial extent of these records and the lack of high-resolution flux data do not allow us to determine whether changes in dust deposition occurred with similar timing, magnitude and abruptness throughout northwest Africa. Here we present new records from a meridional transect of cores stretching from 31°N to 19°N along the northwest African margin. By combining grain size endmember modeling with 230Th-normalized fluxes for the first time, we are able to document spatial and temporal changes in dust deposition under the North African dust plume throughout the last 20 ka. Our results provide quantitative estimates of the magnitude of dust flux changes associated with Heinrich Stadial 1, the Younger Dryas, and the African Humid Period (AHP; ~11.7-5 ka), offering robust targets for model-based estimates of the climatic and biogeochemical impacts of past changes in North African dust emissions. Our data suggest that dust fluxes between 8 and 6 ka were a factor of ~5 lower than average fluxes during the last 2 ka. Using a simple model to estimate the effects of bioturbation on dust input signals, we find that our data are consistent with abrupt, synchronous changes in dust fluxes in all cores at the beginning and end of the AHP. The mean ages of these transitions are 11.8±0.2 ka (1Sigma) and 4.9±0.2 ka, respectively.
Resumo:
Present day hydrographic conditions along the western Iberian margin are characterized by seasonal upwelling with filaments that can penetrate more than 200 km into the open ocean and constitute areas of cold and highly productive waters. In order to investigate spatial and temporal gradients in temperature and productivity conditions during the last 150 ky, high-resolution proxy records were generated in 3 cores (SU92-03, MD95-2040, MD95-2042), located along the Iberian coast between 43°12'N and 37°48'N and forming a N-S profile. In all cores, planktonic foraminifera census counts are used to reconstruct summer sea surface temperature (SSTsu) and export productivity (Pexpsu) using the modern analog technique SIMMAX 28. SSTsu and Pexpsu values similar to the present are observed throughout the Holocene and MIS 5e periods for each site, respectively, indicating fairly stable conditions equivalent to the modern ones. On glacial/interglacial timescales, SSTsu increases by 2-3 °C from the northern to southernmost site. Pexpsu, on the other hand, shows a decrease of 30-40 gC/m**2/yr from North to South at present time and during interglacial periods, and no significant variation (90-100 gC/m**2/yr) during glacial periods. The northernmost core SU92-03 reveals the coldest conditions with records more similar to MD95-2040 than to MD95-2042, the later of which is, as at present, more affected by subtropical waters. Core SU92-03 shows higher interglacial productivity similar to open ocean mid- to high latitude sites, while the other two cores monitor higher glacial productivity conform with other upwelling sites off NW Africa. A boundary between differences in glacial/interglacial productivity appears to be present in our study between 43°12'N and 40°35'N. Especially north of 40°N, coldest SSTsu and lowest Pexpsu are found during Heinrich events (H)1-H8 and H10-H11. In contrast, lowest Pexpsu do not coincide with these events at site MD95-2042, but appear to be related to the presence of relatively warm and nutrient-poor subtropical Eastern North Atlantic Central Water advected with the Azores Current.