186 resultados para Poincare compactification


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the consequences of one extra spatial dimension for the stability and energy spectrum of the non-relativistic hydrogen atom with a potential defined by Gauss' law, i.e. proportional to 1 /| x | 2 . The additional spatial dimension is considered to be either infinite or curled-up in a circle of radius R. In both cases, the energy spectrum is bounded from below for charges smaller than the same critical value and unbounded from below otherwise. As a consequence of compactification, negative energy eigenstates appear: if R is smaller than a quarter of the Bohr radius, the corresponding Hamiltonian possesses an infinite number of bound states with minimal energy extending at least to the ground state of the hydrogen atom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the electron dynamics and transport properties of one-dimensional continuous models with random, short-range correlated impurities. We develop a generalized Poincare map formalism to cast the Schrodinger equation for any potential into a discrete set of equations, illustrating its application by means of a specific example. We then concentrate on the case of a Kronig-Penney model with dimer impurities. The previous technique allows us to show that this model presents infinitely many resonances (zeroes of the reflection coefficient at a single dimer) that give rise to a band of extended states, in contradiction with the general viewpoint that all one-dimensional models with random potentials support only localized states. We report on exact transfer-matrix numerical calculations of the transmission coefFicient, density of states, and localization length for various strengths of disorder. The most important conclusion so obtained is that this kind of system has a very large number of extended states. Multifractal analysis of very long systems clearly demonstrates the extended character of such states in the thermodynamic limit. In closing, we brieBy discuss the relevance of these results in several physical contexts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Available on demand as hard copy or computer file from Cornell University Library.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Available on demand as hard copy or computer file from Cornell University Library.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Available on demand as hard copy or computer file from Cornell University Library.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Translation of : Les démocraties latines de l'Amerique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Translation of: World organization as affected by the nature of the modern state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chaotic orientations of a top containing a fluid filled cavity are investigated analytically and numerically under small perturbations. The top spins and rolls in nonsliding contact with a rough horizontal plane and the fluid in the ellipsoidal shaped cavity is considered to be ideal and describable by finite degrees of freedom. A Hamiltonian structure is established to facilitate the application of Melnikov-Holmes-Marsden (MHM) integrals. In particular, chaotic motion of the liquid-filled top is identified to be arisen from the transversal intersections between the stable and unstable manifolds of an approximated, disturbed flow of the liquid-filled top via the MHM integrals. The developed analytical criteria are crosschecked with numerical simulations via the 4th Runge-Kutta algorithms with adaptive time steps.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let a compact Hausdorff space X contain a non-empty perfect subset. If α < β and β is a countable ordinal, then the Banach space Bα (X) of all bounded real-valued functions of Baire class α on X is a proper subspace of the Banach space Bβ (X). In this paper it is shown that: 1. Bα (X) has a representation as C(bα X), where bα X is a compactification of the space P X – the underlying set of X in the Baire topology generated by the Gδ -sets in X. 2. If 1 ≤ α < β ≤ Ω, where Ω is the first uncountable ordinal number, then Bα (X) is uncomplemented as a closed subspace of Bβ (X). These assertions for X = [0, 1] were proved by W. G. Bade [4] and in the case when X contains an uncountable compact metrizable space – by F.K.Dashiell [9]. Our argumentation is one non-metrizable modification of both Bade’s and Dashiell’s methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

∗ This work was partially supported by the National Foundation for Scientific Researches at the Bulgarian Ministry of Education and Science under contract no. MM-427/94.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We overview our recent results on polarisation dynamics of vector solitons in erbium doped fibre laser mode locked with carbon nanotubes. Our experimental and theoretical study revealed new families of vector solitons for fundamental and bound-state soliton operations. The observed scenario of the evolution of the states of polarisation (SOPs) on the Poincare sphere includes fast polarisation switching between two and three SOPs along with slow SOP evolution on a double scroll chaotic attractor. The underlying physics presents an interplay between effects of birefringence of the laser cavity and light induced anisotropy caused by polarisation hole burning. © 2014 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Л. И. Каранджулов, Н. Д. Сиракова - В работата се прилага методът на Поанкаре за решаване на почти регулярни нелинейни гранични задачи при общи гранични условия. Предполага се, че диференциалната система съдържа сингулярна функция по отношение на малкия параметър. При определени условия се доказва асимптотичност на решението на поставената задача.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We show that a conserved current for the Maxwellian field, which is invariant under the gauge group of that field, is the sum of two currents Ф+T, where Ф corresponds to a Poincare symmetry of the field, and T is a topological form that is conserved under every dynamics.