878 resultados para Parallel processing (Electronic computers)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The number of applications based on embedded systems grows significantly every year, even with the fact that embedded systems have restrictions, and simple processing units, the performance of these has improved every day. However the complexity of applications also increase, a better performance will always be necessary. So even such advances, there are cases, which an embedded system with a single unit of processing is not sufficient to achieve the information processing in real time. To improve the performance of these systems, an implementation with parallel processing can be used in more complex applications that require high performance. The idea is to move beyond applications that already use embedded systems, exploring the use of a set of units processing working together to implement an intelligent algorithm. The number of existing works in the areas of parallel processing, systems intelligent and embedded systems is wide. However works that link these three areas to solve any problem are reduced. In this context, this work aimed to use tools available for FPGA architectures, to develop a platform with multiple processors to use in pattern classification with artificial neural networks

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metaheuristics techiniques are known to solve optimization problems classified as NP-complete and are successful in obtaining good quality solutions. They use non-deterministic approaches to generate solutions that are close to the optimal, without the guarantee of finding the global optimum. Motivated by the difficulties in the resolution of these problems, this work proposes the development of parallel hybrid methods using the reinforcement learning, the metaheuristics GRASP and Genetic Algorithms. With the use of these techniques, we aim to contribute to improved efficiency in obtaining efficient solutions. In this case, instead of using the Q-learning algorithm by reinforcement learning, just as a technique for generating the initial solutions of metaheuristics, we use it in a cooperative and competitive approach with the Genetic Algorithm and GRASP, in an parallel implementation. In this context, was possible to verify that the implementations in this study showed satisfactory results, in both strategies, that is, in cooperation and competition between them and the cooperation and competition between groups. In some instances were found the global optimum, in others theses implementations reach close to it. In this sense was an analyze of the performance for this proposed approach was done and it shows a good performance on the requeriments that prove the efficiency and speedup (gain in speed with the parallel processing) of the implementations performed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ln this work, it was deveIoped a parallel cooperative genetic algorithm with different evolution behaviors to train and to define architectures for MuItiIayer Perceptron neural networks. MuItiIayer Perceptron neural networks are very powerful tools and had their use extended vastIy due to their abiIity of providing great resuIts to a broad range of appIications. The combination of genetic algorithms and parallel processing can be very powerful when applied to the Iearning process of the neural network, as well as to the definition of its architecture since this procedure can be very slow, usually requiring a lot of computational time. AIso, research work combining and appIying evolutionary computation into the design of neural networks is very useful since most of the Iearning algorithms deveIoped to train neural networks only adjust their synaptic weights, not considering the design of the networks architecture. Furthermore, the use of cooperation in the genetic algorithm allows the interaction of different populations, avoiding local minima and helping in the search of a promising solution, acceIerating the evolutionary process. Finally, individuaIs and evolution behavior can be exclusive on each copy of the genetic algorithm running in each task enhancing the diversity of populations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study shows the implementation and the embedding of an Artificial Neural Network (ANN) in hardware, or in a programmable device, as a field programmable gate array (FPGA). This work allowed the exploration of different implementations, described in VHDL, of multilayer perceptrons ANN. Due to the parallelism inherent to ANNs, there are disadvantages in software implementations due to the sequential nature of the Von Neumann architectures. As an alternative to this problem, there is a hardware implementation that allows to exploit all the parallelism implicit in this model. Currently, there is an increase in use of FPGAs as a platform to implement neural networks in hardware, exploiting the high processing power, low cost, ease of programming and ability to reconfigure the circuit, allowing the network to adapt to different applications. Given this context, the aim is to develop arrays of neural networks in hardware, a flexible architecture, in which it is possible to add or remove neurons, and mainly, modify the network topology, in order to enable a modular network of fixed-point arithmetic in a FPGA. Five synthesis of VHDL descriptions were produced: two for the neuron with one or two entrances, and three different architectures of ANN. The descriptions of the used architectures became very modular, easily allowing the increase or decrease of the number of neurons. As a result, some complete neural networks were implemented in FPGA, in fixed-point arithmetic, with a high-capacity parallel processing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last years have presented an increase in the acceptance and adoption of the parallel processing, as much for scientific computation of high performance as for applications of general intention. This acceptance has been favored mainly for the development of environments with massive parallel processing (MPP - Massively Parallel Processing) and of the distributed computation. A common point between distributed systems and MPPs architectures is the notion of message exchange, that allows the communication between processes. An environment of message exchange consists basically of a communication library that, acting as an extension of the programming languages that allow to the elaboration of applications parallel, such as C, C++ and Fortran. In the development of applications parallel, a basic aspect is on to the analysis of performance of the same ones. Several can be the metric ones used in this analysis: time of execution, efficiency in the use of the processing elements, scalability of the application with respect to the increase in the number of processors or to the increase of the instance of the treat problem. The establishment of models or mechanisms that allow this analysis can be a task sufficiently complicated considering parameters and involved degrees of freedom in the implementation of the parallel application. An joined alternative has been the use of collection tools and visualization of performance data, that allow the user to identify to points of strangulation and sources of inefficiency in an application. For an efficient visualization one becomes necessary to identify and to collect given relative to the execution of the application, stage this called instrumentation. In this work it is presented, initially, a study of the main techniques used in the collection of the performance data, and after that a detailed analysis of the main available tools is made that can be used in architectures parallel of the type to cluster Beowulf with Linux on X86 platform being used libraries of communication based in applications MPI - Message Passing Interface, such as LAM and MPICH. This analysis is validated on applications parallel bars that deal with the problems of the training of neural nets of the type perceptrons using retro-propagation. The gotten conclusions show to the potentiality and easinesses of the analyzed tools.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyzes the performance of a parallel implementation of Coupled Simulated Annealing (CSA) for the unconstrained optimization of continuous variables problems. Parallel processing is an efficient form of information processing with emphasis on exploration of simultaneous events in the execution of software. It arises primarily due to high computational performance demands, and the difficulty in increasing the speed of a single processing core. Despite multicore processors being easily found nowadays, several algorithms are not yet suitable for running on parallel architectures. The algorithm is characterized by a group of Simulated Annealing (SA) optimizers working together on refining the solution. Each SA optimizer runs on a single thread executed by different processors. In the analysis of parallel performance and scalability, these metrics were investigated: the execution time; the speedup of the algorithm with respect to increasing the number of processors; and the efficient use of processing elements with respect to the increasing size of the treated problem. Furthermore, the quality of the final solution was verified. For the study, this paper proposes a parallel version of CSA and its equivalent serial version. Both algorithms were analysed on 14 benchmark functions. For each of these functions, the CSA is evaluated using 2-24 optimizers. The results obtained are shown and discussed observing the analysis of the metrics. The conclusions of the paper characterize the CSA as a good parallel algorithm, both in the quality of the solutions and the parallel scalability and parallel efficiency

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents the concept, design and implementation of a MP-SoC platform, named STORM (MP-SoC DirecTory-Based PlatfORM). Currently the platform is composed of the following modules: SPARC V8 processor, GPOP processor, Cache module, Memory module, Directory module and two different modles of Network-on-Chip, NoCX4 and Obese Tree. All modules were implemented using SystemC, simulated and validated, individually or in group. The modules description is presented in details. For programming the platform in C it was implemented a SPARC assembler, fully compatible with gcc s generated assembly code. For the parallel programming it was implemented a library for mutex managing, using the due assembler s support. A total of 10 simulations of increasing complexity are presented for the validation of the presented concepts. The simulations include real parallel applications, such as matrix multiplication, Mergesort, KMP, Motion Estimation and DCT 2D

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increasing complexity of integrated circuits has boosted the development of communications architectures like Networks-on-Chip (NoCs), as an architecture; alternative for interconnection of Systems-on-Chip (SoC). Networks-on-Chip complain for component reuse, parallelism and scalability, enhancing reusability in projects of dedicated applications. In the literature, lots of proposals have been made, suggesting different configurations for networks-on-chip architectures. Among all networks-on-chip considered, the architecture of IPNoSys is a non conventional one, since it allows the execution of operations, while the communication process is performed. This study aims to evaluate the execution of data-flow based applications on IPNoSys, focusing on their adaptation against the design constraints. Data-flow based applications are characterized by the flowing of continuous stream of data, on which operations are executed. We expect that these type of applications can be improved when running on IPNoSys, because they have a programming model similar to the execution model of this network. By observing the behavior of these applications when running on IPNoSys, were performed changes in the execution model of the network IPNoSys, allowing the implementation of an instruction level parallelism. For these purposes, analysis of the implementations of dataflow applications were performed and compared

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Compact Muon Solenoid (CMS) detector is described. The detector operates at the Large Hadron Collider (LHC) at CERN. It was conceived to study proton-proton (and lead-lead) collisions at a centre-of-mass energy of 14 TeV (5.5 TeV nucleon-nucleon) and at luminosities up to 10(34)cm(-2)s(-1) (10(27)cm(-2)s(-1)). At the core of the CMS detector sits a high-magnetic-field and large-bore superconducting solenoid surrounding an all-silicon pixel and strip tracker, a lead-tungstate scintillating-crystals electromagnetic calorimeter, and a brass-scintillator sampling hadron calorimeter. The iron yoke of the flux-return is instrumented with four stations of muon detectors covering most of the 4 pi solid angle. Forward sampling calorimeters extend the pseudo-rapidity coverage to high values (vertical bar eta vertical bar <= 5) assuring very good hermeticity. The overall dimensions of the CMS detector are a length of 21.6 m, a diameter of 14.6 m and a total weight of 12500 t.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In some applications with case-based system, the attributes available for indexing are better described as linguistic variables instead of receiving numerical treatment. In these applications, the concept of fuzzy hypercube can be applied to give a geometrical interpretation of similarities among cases. This paper presents an approach that uses geometrical properties of fuzzy hypercube space to make indexing and retrieval processes of cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel hybrid high power rectifier capable to achieve unity power factor is proposed in this paper. Single-phase SEPIC rectifiers are associated in parallel with each leg of three-phase 6-pulse diode rectifier resulting in a programmable input current waveform structure. In this paper it is described the principles of operation of the proposed converter with detailed simulation and experimental results. For a total harmonic distortion of the input line current (THDI) less than 2% the rated power of the SEPIC rectifiers is 33%. Therefore, power rating of the SEPIC parallel converters is a fraction of the output power, on the range of 20% to 33% of the nominal output power, making the proposed solution economically viable for high power installations, with fast pay back of the investment. Moreover, retrofits to existing installations are also possible with this proposed topology, since the parallel path can be easily controlled by integration with the already existing de-link. Experimental results are presented for a 3 kW implemented prototype, in order to verify the developed analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An improvement to the quality bidimensional Delaunay mesh generation algorithm, which combines the mesh refinement algorithms strategy of Ruppert and Shewchuk is proposed in this research. The developed technique uses diametral lenses criterion, introduced by L. P. Chew, with the purpose of eliminating the extremely obtuse triangles in the boundary mesh. This method splits the boundary segment and obtains an initial prerefinement, and thus reducing the number of necessary iterations to generate a high quality sequential triangulation. Moreover, it decreases the intensity of the communication and synchronization between subdomains in parallel mesh refinement. © 2008 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In large distributed systems, where shared resources are owned by distinct entities, there is a need to reflect resource ownership in resource allocation. An appropriate resource management system should guarantee that resource's owners have access to a share of resources proportional to the share they provide. In order to achieve that some policies can be used for revoking access to resources currently used by other users. In this paper, a scheduling policy based in the concept of distributed ownership is introduced called Owner Share Enforcement Policy (OSEP). OSEP goal is to guarantee that owner do not have their jobs postponed for longer periods of time. We evaluate the results achieved with the application of this policy using metrics that describe policy violation, loss of capacity, policy cost and user satisfaction in environments with and without job checkpointing. We also evaluate and compare the OSEP policy with the Fair-Share policy, and from these results it is possible to capture the trade-offs from different ways to achieve fairness based on the user satisfaction. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we explore the NVIDIA graphical processing units (GPU) computational power in cryptography using CUDA (Compute Unified Device Architecture) technology. CUDA makes the general purpose computing easy using the parallel processing presents in GPUs. To do this, the NVIDIA GPUs architectures and CUDA are presented, besides cryptography concepts. Furthermore, we do the comparison between the versions executed in CPU with the parallel version of the cryptography algorithms Advanced Encryption Standard (AES) and Message-digest Algorithm 5 (MD5) wrote in CUDA. © 2011 AISTI.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Software Transactional Memory (STM) systems have poor performance under high contention scenarios. Since many transactions compete for the same data, most of them are aborted, wasting processor runtime. Contention management policies are typically used to avoid that, but they are passive approaches as they wait for an abort to happen so they can take action. More proactive approaches have emerged, trying to predict when a transaction is likely to abort so its execution can be delayed. Such techniques are limited, as they do not replace the doomed transaction by another or, when they do, they rely on the operating system for that, having little or no control on which transaction should run. In this paper we propose LUTS, a Lightweight User-Level Transaction Scheduler, which is based on an execution context record mechanism. Unlike other techniques, LUTS provides the means for selecting another transaction to run in parallel, thus improving system throughput. Moreover, it avoids most of the issues caused by pseudo parallelism, as it only launches as many system-level threads as the number of available processor cores. We discuss LUTS design and present three conflict-avoidance heuristics built around LUTS scheduling capabilities. Experimental results, conducted with STMBench7 and STAMP benchmark suites, show LUTS efficiency when running high contention applications and how conflict-avoidance heuristics can improve STM performance even more. In fact, our transaction scheduling techniques are capable of improving program performance even in overloaded scenarios. © 2011 Springer-Verlag.