995 resultados para Orthopedic fixation devices
Resumo:
The consequences of falls are often dreadful for individuals with lower limb amputation using bone-anchored prosthesis.[1-5] Typically, the impact on the fixation is responsible for bending the intercutaneous piece that could lead to a complete breakage over time. .[3, 5-8] The surgical replacement of this piece is possible but complex and expensive. Clearly, there is a need for solid data enabling an evidence-based design of protective devices limiting impact forces and torsion applied during a fall. The impact on the fixation during an actual fall is obviously difficult to record during a scientific experiment.[6, 8-13] Consequently, Schwartze and colleagues opted for one of the next best options science has to offer: simulation with an able-bodied participant. They recorded body movements and knee impacts on the floor while mimicking several plausible falling scenarios. Then, they calculated the forces and moments that would be applied at four levels along the femur corresponding to amputation heights.[6, 8-11, 14-25] The overall forces applied during the falls were similar regardless of the amputation height indicating that the impact forces were simply translated along the femur. As expected, they showed that overall moments generally increased with amputation height due to changes in lever arm. This work demonstrates that devices preventing only against force overload do not require considering amputation height while those protecting against bending moments should. Another significant contribution is to provide, for the time, the magnitude of the impact load during different falls. This loading range is crucial to the overall design and, more precisely, the triggering threshold of protective devices. Unfortunately, the analysis of only a single able-bodied participant replicating falls limits greatly the generalisation of the findings. Nonetheless, this case study is an important milestone contributing to a better understanding of load impact during a fall. This new knowledge will improve the treatment, the safe ambulation and, ultimately, the quality of life of individuals fitted with bone-anchored prosthesis.
Resumo:
Surgical implantations of osseointegrated fixations for bone-anchored prosthesis are developing at an unprecedented pace worldwide while initial skepticism in the orthopedic community is slowly fading away. Clearly, this option is becoming accessible to a wide range of individuals with limb loss. [1-18] The team led by Dr Rickard Branemark has previously published a number of landmark articles focusing on the benefits and safety of the OPRA fixation mainly for individual with lower limb loss, particularly those with transfemoral amputation. [1-3, 19-32] However, similar information is lacking for those with upper limb amputation. This team is once again taking a leading role by sharing a retrospective study focusing on the implant survival, adverse events, implant stability, and bone remodelling for 18 individuals with transhumeral amputation over a 5-year post-operative period. Therefore, a comprehensive analysis of the safety of the procedure is accessible for the first time. In essence, the results showed an implant survival rate of 83% and 80% at 2 and 5 year follow ups, respectively. The most frequent adverse events were superficial skin infections that occurred for 28% (5) participants while the least frequent was deep bone infection that happened only once. More importantly, 38% of complications due to infections were effectively managed with nonoperative treatments (e.g., revision of skin penetration site, local cleaning, antibiotics, restriction of soft tissue mobility). Implant stability and bone remodelling were satisfactory. Clearly, this study provided better understanding of the safety of the OPRA surgical and rehabilitation procedure for individuals with upper limb amputation while establishing standards and benchmark data for future studies. However, strong evidences of the benefits are yet to be demonstrated. However, increase in health related quality of life and functional outcomes (e.g., range of movement) are likely. Altogether, the team of authors are providing further evidence that bone-anchored attachment is definitely a promising alternative to socket prostheses.
Resumo:
This thesis investigates the design of motivating and engaging software experiences. In particular it examines the use of video game elements in non-game contexts, known as gamification, and how to effectively design gamification experiences for smartphone applications. The original contribution of this thesis is a novel framework for designing gamification, derived from an iterative process of evaluating gamified prototypes. The outcomes of this research can help us to better understand the impact of gamification in today's society and how it can be used to design more effective software.
Resumo:
Neural interface devices and the melding of mind and machine, challenge the law in determining where civil liability for injury, damage or loss should lie. The ability of the human mind to instruct and control these devices means that in a negligence action against a person with a neural interface device, determining the standard of care owed by him or her will be of paramount importance. This article considers some of the factors that may influence the court’s determination of the appropriate standard of care to be applied in this situation, leading to the conclusion that a new standard of care might evolve.
Resumo:
Current mobile devices and streaming video services support high definition (HD) video, increasing expectation for more contents. HD video streaming generally requires large bandwidth, exerting pressures on existing networks. New generation of video compression codecs, such as VP9 and H.265/HEVC, are expected to be more effective for reducing bandwidth. Existing studies to measure the impact of its compression on users’ perceived quality have not been focused on mobile devices. Here we propose new Quality of Experience (QoE) models that consider both subjective and objective assessments of mobile video quality. We introduce novel predictors, such as the correlations between video resolution and size of coding unit, and achieve a high goodness-of-fit to the collected subjective assessment data (adjusted R-square >83%). The performance analysis shows that H.265 can potentially achieve 44% to 59% bit rate saving compared to H.264/AVC, slightly better than VP9 at 33% to 53%, depending on video content and resolution.
Resumo:
In various embodiments, optoelectronic devices are described herein. The optoelectronic device may include an optoelectronic cell arranged so as to wrap around a central axis wherein the cell includes a first conductive layer, a semi-conductive layer disposed over and in electrical communication with the first conductive layer, and a second conductive layer disposed over and in electrical communication with the semi-conductive layer. In various embodiments, methods for making optoelectronic devices are described herein. The methods may include forming an optoelectronic cell while flat and wrapping the optoelectronic cell around a central axis. The optoelectronic devices may be photovoltaic devices. Alternatively, the optoelectronic devices may be organic light emitting diodes.
Resumo:
We have designed, synthesized and utilized a new non-fullerene electron acceptor, 9,9′-(9,9-dioctyl-9H-fluorene-2,7-diyl)bis(2,7-dioctyl-4-(octylamino)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone) (B2), for use in solution-processable bulk-heterojunction devices. B2 is based on a central fluorene moiety, which was capped at both ends with an electron-accepting naphthalenediimide functionality. B2 exhibited excellent solubility (>30 mg mL−1 in chloroform), high thermal and photochemical stability, and appropriate energy levels for use with the classical polymer donor regioregular poly(3-hexylthiophene). A power conversion efficiency of 1.16 % was achieved for primitive bulk-heterojunction devices with a high fill factor of approximately 54 %.
Resumo:
Diketopyrrolopyrole-naphthalene polymer (PDPP-TNT), a donor-acceptor co-polymer, has shown versatile behavior demonstrating high performances in organic field-effect transistors (OFETs) and organic photovoltaic (OPV) devices. In this paper we report investigation of charge carrier dynamics in PDPP-TNT, and [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) bulk-heterojunction based inverted OPV devices using current density-voltage (J-V) characteristics, space charge limited current (SCLC) measurements, capacitance-voltage (C-V) characteristics, and impedance spectroscopy (IS). OPV devices in inverted architecture, ITO/ZnO/PDPP-TNT:PC71BM/MoO3/Ag, are processed and characterized at room conditions. The power conversion efficiency (PCE) of these devices are measured ∼3.8%, with reasonably good fill-factor 54.6%. The analysis of impedance spectra exhibits electron’s mobility ∼2 × 10−3 cm2V−1s−1, and lifetime in the range of 0.03-0.23 ms. SCLC measurements give hole mobility of 1.12 × 10−5 cm2V−1s−1, and electron mobility of 8.7 × 10−4 cm2V−1s−1.
Resumo:
Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket-related discomfort leading to a significant decrease in quality of life. Bone-anchored prostheses are increasingly acknowledged as viable alternative method of attachment of artificial limb. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous fixation. To date, a few osseointegration fixations are commercially available. Several devices are at different stages of development particularly in Europe and the US.[1-15] Clearly, surgical procedures are currently blooming worldwide. Indeed, Australia and Queensland in particular have one of the fastest growing populations. Previous studies involving either screw-type implants or press-fit fixations for bone-anchorage have focused on fragmented biomechanics aspects as well as the clinical benefits and safety of the procedure. However, very few publications have synthetized this information and provided an overview of the current developments in bone-anchored prostheses worldwide, let alone in Australia. The purposes of the presentation will be: 1. To provide an overview of the state-of-art developments in bone-anchored prostheses with as strong emphasis on the design of fixations, treatment, benefits, risks as well as future opportunities and challenges, 2. To present the current international developments of procedures for bone-anchored prostheses in terms of numbers of centers, number of cases and typical case-mix, 3. To highlight the current role Australia is playing as a leader worldwide in terms of growing population, broadest range of case-mix, choices of fixations, development of reimbursement schemes, unique clinical outcome registry for evidence-based practice, cutting-edge research, consumer demand and general public interest.
Resumo:
Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket-related discomfort leading to a significant decrease in quality of life. Bone-anchored prostheses are increasingly acknowledged as viable alternative method of attachment of artificial limb. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous fixation. To date, a few osseointegration fixations are commercially available. Several devices are at different stages of development particularly in Europe and the US. [1-15] Clearly, surgical procedures are currently blooming worldwide. Indeed, Australia and Queensland, in particular, have one of the fastest growing populations. Previous studies involving either screw-type implants or press-fit fixations for bone-anchorage have focused on biomechanics aspects as well as the clinical benefits and safety of the procedure. In principle, bone-anchored prostheses should eliminate lifetime expenses associated with sockets and, consequently, potentially alleviate the financial burden of amputation for governmental organizations. Unfortunately, publications focusing on cost-effectiveness are sparse. In fact, only one study published by Haggstrom et al (2012), reported that “despite significantly fewer visits for prosthetic service the annual mean costs for osseointegrated prostheses were comparable with socket-suspended prostheses”. Consequently, governmental organizations such as Queensland Artificial Limb Services (QALS) are facing a number of challenges while adjusting financial assistance schemes that should be fair and equitable to their clients fitted with bone-anchored prostheses. Clearly, more scientific evidence extracted from governmental databases is needed to further consolidate the analyses of financial burden associated with both methods of attachment (i.e., conventional sockets prostheses, bone-anchored prostheses). The purpose of the presentation will be to share the current outcomes of a cost-analysis study lead by QALS. The specific objectives will be: • To outline methodological avenues to assess the cost-effectiveness of bone-anchored prostheses compared to conventional sockets prostheses, • To highlight the potential obstacles and limitations in cost-effectiveness analyses of bone-anchored prostheses, • To present cohort results of a cost-effectiveness (QALY vs cost) including the determination of fair Incremental cost-effectiveness Ratios (ICER) as well as cost-benefit analysis focusing on the comparing costs and key outcome indicators (e.g., QTFA, TUG, 6MWT, activities of daily living) over QALS funding cycles for both methods of attachment.
Resumo:
Mobile devices are very popular among tertiary student populations. This study looks at student use of hand-held mobile devices within the context of a first year programming unit. This research sought for ways in which an educational app on these devices could be successfully integrated into such a class's learning.
Resumo:
Biventricular support with dual rotary ventricular assist devices (VADs) has been implemented clinically with restriction of the right VAD (RVAD) outflow cannula to artificially increase afterload and, therefore, operate within recommended design speed ranges. However, the low preload and high afterload sensitivity of these devices increase the susceptibility of suction events. Active control systems are prone to sensor drift or inaccurate inferred (sensor-less) data, therefore an alternative solution may be of benefit. This study presents the in vitro evaluation of a compliant outflow cannula designed to passively decrease the afterload sensitivity of rotary RVADs and minimize left-sided suction events. A one-way fluid-structure interaction model was initially used to produce a design with suitable flow dynamics and radial deformation. The resultant geometry was cast with different initial cross-sectional restrictions and concentrations of a softening diluent before evaluation in a mock circulation loop. Pulmonary vascular resistance (PVR) was increased from 50 dyne s/cm5 until left-sided suction events occurred with each compliant cannula and a rigid, 4.5 mm diameter outflow cannula for comparison. Early suction events (PVR ∼ 300 dyne s/cm5) were observed with the rigid outflow cannula. Addition of the compliant section with an initial 3 mm diameter restriction and 10% diluent expanded the outflow restriction as PVR increased, thus increasing RVAD flow rate and preventing left-sided suction events at PVR levels beyond 1000 dyne s/cm5. Therefore, the compliant, restricted outflow cannula provided a passive control system to assist in the prevention of suction events with rotary biventricular support while maintaining pump speeds within normal ranges of operation.
Resumo:
CdS nanoparticles exhibit size dependent optical and electrical properties. We report here the photocurrent and I-V characteristic studies of CdS nanoparticle devices. A sizable short circuit photocurrent was observed in the detection range governed by the size of the clusters. We speculate on the mechanisms leading to the photocurrent and emission in these nanometer scale systems.
Resumo:
Electric-motored personal mobility devices (PMDs) are appearing on Australian roads. While legal to import and own, their use is typically illegal for adult riders within the road transport system. However, these devices could provide an answer to traffic congestion by getting people out of cars for short trips (“first-and-last mile” travel). City of Ryde council, Macquarie University, and Transport for NSW examined PMD use within the road transport system. Stage 1 of the project examined PMD use within a controlled pedestrian environment on the Macquarie University campus. Three PMD categories were used: one-wheelers (an electric unicycle, the Solowheel); two-wheelers (an electric scooter, the Egret); and three-wheelers (the Qugo). The two-wheeled PMD was most effective in terms of flexibility. In contrast, the three-wheeled PMD was most effective in terms of speed. One-wheeled PMD riders were very satisfied with their device, especially at speed, but significant training and practice was required. Two-wheeled PMD riders had less difficulty navigating through pedestrian precincts and favoured the manoeuvrability of the device as the relative narrowness of the two-wheeled PMD made it easier to use on a diversity of path widths. The usability of all PMDs was compromised by the weight of the devices, difficulties in ascending steeper gradients, portability, and parking. This was a limited trial, with a small number of participants and within a unique environment. However, agreement has been reached for a Stage 2 extension into the Macquarie Park business precinct for further real-world trials within a fully functional road transport system.
Resumo:
The potential of using mobile devices to increase learner engagement within a small group of at-risk vocational education students was studied through a qualitative case study. It was found that the use of mobile devices could be a strategy educators may use to reduce the barriers these students often encounter within traditional classrooms. Notions of interactivity, ease of use, existing familiarity and fluency were found to be fundamental variables that were central to the group's use of mobile devices. The study provides direction for educators looking for innovative ways to engage students who struggle in a classroom situation.