899 resultados para Numeric sets
Resumo:
BACKGROUND: Core outcome sets can increase the efficiency and value of research and, as a result, there are an increasing number of studies looking to develop core outcome sets (COS). However, the credibility of a COS depends on both the use of sound methodology in its development and clear and transparent reporting of the processes adopted. To date there is no reporting guideline for reporting COS studies. The aim of this programme of research is to develop a reporting guideline for studies developing COS and to highlight some of the important methodological considerations in the process.
METHODS/DESIGN: The study will include a reporting guideline item generation stage which will then be used in a Delphi study. The Delphi study is anticipated to include two rounds. The first round will ask stakeholders to score the items listed and to add any new items they think are relevant. In the second round of the process, participants will be shown the distribution of scores for all stakeholder groups separately and asked to re-score. A final consensus meeting will be held with an expert panel and stakeholder representatives to review the guideline item list. Following the consensus meeting, a reporting guideline will be drafted and review and testing will be undertaken until the guideline is finalised. The final outcome will be the COS-STAR (Core Outcome Set-STAndards for Reporting) guideline for studies developing COS and a supporting explanatory document.
DISCUSSION: To assess the credibility and usefulness of a COS, readers of a COS development report need complete, clear and transparent information on its methodology and proposed core set of outcomes. The COS-STAR guideline will potentially benefit all stakeholders in COS development: COS developers, COS users, e.g. trialists and systematic reviewers, journal editors, policy-makers and patient groups.
Resumo:
Some reasons for registering trials might be considered as self-serving, such as satisfying the requirements of a journal in which the researchers wish to publish their eventual findings or publicising the trial to boost recruitment. Registry entries also help others, including systematic reviewers, to know about ongoing or unpublished studies and contribute to reducing research waste by making it clear what studies are ongoing. Other sources of research waste include inconsistency in outcome measurement across trials in the same area, missing data on important outcomes from some trials, and selective reporting of outcomes. One way to reduce this waste is through the use of core outcome sets: standardised sets of outcomes for research in specific areas of health and social care. These do not restrict the outcomes that will be measured, but provide the minimum to include if a trial is to be of the most use to potential users. We propose that trial registries, such as ISRCTN, encourage researchers to note their use of a core outcome set in their entry. This will help people searching for trials and those worried about selective reporting in closed trials. Trial registries can facilitate these efforts to make new trials as useful as possible and reduce waste. The outcomes section in the entry could prompt the researcher to consider using a core outcome set and facilitate the specification of that core outcome set and its component outcomes through linking to the original core outcome set. In doing this, registries will contribute to the global effort to ensure that trials answer important uncertainties, can be brought together in systematic reviews, and better serve their ultimate aim of improving health and well-being through improving health and social care.
Resumo:
Inferences in directed acyclic graphs associated with probability intervals and sets of probabilities are NP-hard, even for polytrees. We propose: 1) an improvement on Tessem’s A/R algorithm for inferences on polytrees associated with probability intervals; 2) a new algorithm for approximate inferences based on local search; 3) branch-and-bound algorithms that combine the previous techniques. The first two algorithms produce complementary approximate solutions, while branch-and-bound procedures can generate either exact or approximate solutions. We report improvements on existing techniques for inference with probability sets and intervals, in some cases reducing computational effort by several orders of magnitude.
Resumo:
Nesta tese são estudados espaços de Besov de suavidade generalizada em espaços euclidianos, numa classe de fractais designados conjuntos-h e em estruturas abstractas designadas por espaços-h. Foram obtidas caracterizações e propriedades para estes espaços de funções. Em particular, no caso de espaços de Besov em espaços euclidianos, foram obtidas caracterizações por diferenças e por decomposições em átomos não suaves, foi provada uma propriedade de homogeneidade e foram estudados multiplicadores pontuais. Para espaços de Besov em conjuntos-h foi obtida uma caracterização por decomposições em átomos não suaves e foi construído um operador extensão. Com o recurso a cartas, os resultados obtidos para estes espaços de funções em fractais foram aplicados para definir e trabalhar com espaços de Besov de suavidade generalizada em estruturas abstractas. Nesta tese foi também estudado o laplaciano fractal, considerado a actuar em espaços de Besov de suavidade generalizada em domínios que contêm um conjunto-h fractal. Foram obtidos resultados no contexto de teoria espectral para este operador e foi estudado, à custa deste operador, um problema de Dirichlet fractal no contexto de conjuntos-h.
Resumo:
A (κ, τ)-regular set is a subset of the vertices of a graph G, inducing a κ-regular subgraph such that every vertex not in the subset has τ neighbors in it. A main eigenvalue of the adjacency matrix A of a graph G has an eigenvector not orthogonal to the all-one vector j. For graphs with a (κ, τ)-regular set a necessary and sufficient condition for an eigenvalue be non-main is deduced and the main eigenvalues are characterized. These results are applied to the construction of infinite families of bidegreed graphs with two main eigenvalues and the same spectral radius (index) and some relations with strongly regular graphs are obtained. Finally, the determination of (κ, τ)-regular sets is analyzed. © 2009 Elsevier Inc. All rights reserved.
Resumo:
“Branch-and-cut” algorithm is one of the most efficient exact approaches to solve mixed integer programs. This algorithm combines the advantages of a pure branch-and-bound approach and cutting planes scheme. Branch-and-cut algorithm computes the linear programming relaxation of the problem at each node of the search tree which is improved by the use of cuts, i.e. by the inclusion of valid inequalities. It should be taken into account that selection of strongest cuts is crucial for their effective use in branch-and-cut algorithm. In this thesis, we focus on the derivation and use of cutting planes to solve general mixed integer problems, and in particular inventory problems combined with other problems such as distribution, supplier selection, vehicle routing, etc. In order to achieve this goal, we first consider substructures (relaxations) of such problems which are obtained by the coherent loss of information. The polyhedral structure of those simpler mixed integer sets is studied to derive strong valid inequalities. Finally those strong inequalities are included in the cutting plane algorithms to solve the general mixed integer problems. We study three mixed integer sets in this dissertation. The first two mixed integer sets arise as a subproblem of the lot-sizing with supplier selection, the network design and the vendor-managed inventory routing problems. These sets are variants of the well-known single node fixed-charge network set where a binary or integer variable is associated with the node. The third set occurs as a subproblem of mixed integer sets where incompatibility between binary variables is considered. We generate families of valid inequalities for those sets, identify classes of facet-defining inequalities, and discuss the separation problems associated with the inequalities. Then cutting plane frameworks are implemented to solve some mixed integer programs. Preliminary computational experiments are presented in this direction.
Resumo:
Let G be a finite graph with an eigenvalue μ of multiplicity m. A set X of m vertices in G is called a star set for μ in G if μ is not an eigenvalue of the star complement G\X which is the subgraph of G induced by vertices not in X. A vertex subset of a graph is (k ,t)-regular if it induces a k -regular subgraph and every vertex not in the subset has t neighbors in it. We investigate the graphs having a (k,t)-regular set which induces a star complement for some eigenvalue. A survey of known results is provided and new properties for these graphs are deduced. Several particular graphs where these properties stand out are presented as examples.
Resumo:
In this paper, relevant results about the determination of (k,t)-regular sets, using the main eigenvalues of a graph, are reviewed and some results about the determination of (0,2)-regular sets are introduced. An algorithm for that purpose is also described. As an illustration, this algorithm is applied to the determination of maximum matchings in arbitrary graphs.
Resumo:
Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.
Resumo:
Rough Set Data Analysis (RSDA) is a non-invasive data analysis approach that solely relies on the data to find patterns and decision rules. Despite its noninvasive approach and ability to generate human readable rules, classical RSDA has not been successfully used in commercial data mining and rule generating engines. The reason is its scalability. Classical RSDA slows down a great deal with the larger data sets and takes much longer times to generate the rules. This research is aimed to address the issue of scalability in rough sets by improving the performance of the attribute reduction step of the classical RSDA - which is the root cause of its slow performance. We propose to move the entire attribute reduction process into the database. We defined a new schema to store the initial data set. We then defined SOL queries on this new schema to find the attribute reducts correctly and faster than the traditional RSDA approach. We tested our technique on two typical data sets and compared our results with the traditional RSDA approach for attribute reduction. In the end we also highlighted some of the issues with our proposed approach which could lead to future research.
Resumo:
We provide a survey of the literature on ranking sets of objects. The interpretations of those set rankings include those employed in the theory of choice under complete uncertainty, rankings of opportunity sets, set rankings that appear in matching theory, and the structure of assembly preferences. The survey is prepared for the Handbook of Utility Theory, vol. 2, edited by Salvador Barberà, Peter Hammond, and Christian Seidl, to be published by Kluwer Academic Publishers. The chapter number is provisional.
Resumo:
The following properties of the core of a one well-known: (i) the core is non-empty; (ii) the core is a lattice; and (iii) the set of unmatched agents is identical for any two matchings belonging to the core. The literature on two-sided matching focuses almost exclusively on the core and studies extensively its properties. Our main result is the following characterization of (von Neumann-Morgenstern) stable sets in one-to-one matching problem only if it is a maximal set satisfying the following properties : (a) the core is a subset of the set; (b) the set is a lattice; (c) the set of unmatched agents is identical for any two matchings belonging to the set. Furthermore, a set is a stable set if it is the unique maximal set satisfying properties (a), (b) and (c). We also show that our main result does not extend from one-to-one matching problems to many-to-one matching problems.
Resumo:
Data mining is one of the hottest research areas nowadays as it has got wide variety of applications in common man’s life to make the world a better place to live. It is all about finding interesting hidden patterns in a huge history data base. As an example, from a sales data base, one can find an interesting pattern like “people who buy magazines tend to buy news papers also” using data mining. Now in the sales point of view the advantage is that one can place these things together in the shop to increase sales. In this research work, data mining is effectively applied to a domain called placement chance prediction, since taking wise career decision is so crucial for anybody for sure. In India technical manpower analysis is carried out by an organization named National Technical Manpower Information System (NTMIS), established in 1983-84 by India's Ministry of Education & Culture. The NTMIS comprises of a lead centre in the IAMR, New Delhi, and 21 nodal centres located at different parts of the country. The Kerala State Nodal Centre is located at Cochin University of Science and Technology. In Nodal Centre, they collect placement information by sending postal questionnaire to passed out students on a regular basis. From this raw data available in the nodal centre, a history data base was prepared. Each record in this data base includes entrance rank ranges, reservation, Sector, Sex, and a particular engineering. From each such combination of attributes from the history data base of student records, corresponding placement chances is computed and stored in the history data base. From this data, various popular data mining models are built and tested. These models can be used to predict the most suitable branch for a particular new student with one of the above combination of criteria. Also a detailed performance comparison of the various data mining models is done.This research work proposes to use a combination of data mining models namely a hybrid stacking ensemble for better predictions. A strategy to predict the overall absorption rate for various branches as well as the time it takes for all the students of a particular branch to get placed etc are also proposed. Finally, this research work puts forward a new data mining algorithm namely C 4.5 * stat for numeric data sets which has been proved to have competent accuracy over standard benchmarking data sets called UCI data sets. It also proposes an optimization strategy called parameter tuning to improve the standard C 4.5 algorithm. As a summary this research work passes through all four dimensions for a typical data mining research work, namely application to a domain, development of classifier models, optimization and ensemble methods.