Polyhedral study of mixed integer sets arising from inventory problems
Contribuinte(s) |
Agra, Agostinho Miguel Mendes |
---|---|
Data(s) |
20/11/2014
20/11/2014
2013
|
Resumo |
“Branch-and-cut” algorithm is one of the most efficient exact approaches to solve mixed integer programs. This algorithm combines the advantages of a pure branch-and-bound approach and cutting planes scheme. Branch-and-cut algorithm computes the linear programming relaxation of the problem at each node of the search tree which is improved by the use of cuts, i.e. by the inclusion of valid inequalities. It should be taken into account that selection of strongest cuts is crucial for their effective use in branch-and-cut algorithm. In this thesis, we focus on the derivation and use of cutting planes to solve general mixed integer problems, and in particular inventory problems combined with other problems such as distribution, supplier selection, vehicle routing, etc. In order to achieve this goal, we first consider substructures (relaxations) of such problems which are obtained by the coherent loss of information. The polyhedral structure of those simpler mixed integer sets is studied to derive strong valid inequalities. Finally those strong inequalities are included in the cutting plane algorithms to solve the general mixed integer problems. We study three mixed integer sets in this dissertation. The first two mixed integer sets arise as a subproblem of the lot-sizing with supplier selection, the network design and the vendor-managed inventory routing problems. These sets are variants of the well-known single node fixed-charge network set where a binary or integer variable is associated with the node. The third set occurs as a subproblem of mixed integer sets where incompatibility between binary variables is considered. We generate families of valid inequalities for those sets, identify classes of facet-defining inequalities, and discuss the separation problems associated with the inequalities. Then cutting plane frameworks are implemented to solve some mixed integer programs. Preliminary computational experiments are presented in this direction. O algoritmo “branch-and-cut” é um dos métodos exatos mais eficientes para resolver problemas de programação inteira mista. Este algoritmo combina as vantagens do algoritmo branch-and-bound com o método de planos de corte. O algoritmo branch-and-cut recorre ao cálculo da relaxação linear em cada nó da árvore de pesquisa, a qual é melhorada com a utilização de cortes, isto é, com a inclusão de desigualdades válidas. Deve-se ter em conta que a escolha dos cortes mais fortes é crucial para a sua utilização efetiva no algoritmo branch-and-cut. Esta tese centra-se na obtenção de desigualdades válidas e sua utilização como planos de corte para resolver problemas gerais de programação inteira mista, em particular, problemas que combinam a gestão de stocks com outros problemas, tais como: a distribuição, selecção de fornecedores, e determinação de rotas de veículos, etc. Para alcançar este objetivo, são consideradas, em primeiro lugar, subestruturas, isto é, modelos de programação inteira mista que definem conjuntos de soluções admissíveis resultantes de relaxações desses problemas gerais. A estrutura poliédrica desses modelos é estudada de modo a serem obtidas novas famílias de desigualdades válidas. Finalmente, essas desigualdades são incluídas em algoritmos de planos de corte para resolver os problemas gerais de programação inteira mista. Nesta dissertação estudamos três modelos de programação inteira mista. Os dois primeiros modelos surgem como relaxações de problemas gerais tais como: dimensionamento de lotes com seleção de fornecedores, desenho de redes, e problemas que combinam a produção com a distribuição. Esses conjuntos constituem variantes do conhecido single node fixed-charge network set, onde uma variável binária ou inteira está associada a cada nó. O terceiro modelo ocorre como relaxação de problemas de programação inteira mista onde são consideradas incompatibilidades entre pares de variáveis binárias. Para os três modelos são geradas famílias de desigualdades válidas, são identificadas classes de desigualdades que definem facetas, e são discutidos os problemas de separação associados a essas desigualdades. Em seguida, essas desigualdades são utilizadas em algoritmos de planos de corte. É apresentada uma experiência computacional preliminar. Doutoramento conjunto em Matemática - Matemática e Aplicações (PDMA) |
Identificador |
http://hdl.handle.net/10773/12864 101423047 |
Idioma(s) |
eng |
Publicador |
Universidade de Aveiro |
Relação |
FCT |
Direitos |
openAccess |
Palavras-Chave | #Matemática #Programação inteira #Desigualdades (Matemática) #Optimização matemática #Mixed integer programming #Inventory problems #Polyhedral theory #Valid inequality #Facet-defining inequality #Convex hull #Separation problem #Extended formulation #Computational experiment |
Tipo |
doctoralThesis |