913 resultados para Model predictive control
Resumo:
A Rijke tube is used to demonstrate model-based control of a combustion instability, where controller design is based on measurement of the unstable system. The Rijke tube used was of length 0.75m and had a grid-stabilised laminar flame in its lower half. A microphone was used as a sensor and a loudspeaker as an actuator for active control. The open loop transfer function (OLTF) required for controller design was that from the actuator to the sensor. This was measured experimentally by sending a signal with two components to the actuator. The first was a control component from an empirically designed controller, which was used to stabilise the system, thus eliminating the non-linear limit cycle. The second was a high bandwidth signal for identification of the OLTF. This approach to measuring the OLTF is generic and can be applied to large-scale combustors. The measured OLTF showed that only the fundamental mode of the tube was unstable; this was consistent with the OLTF predicted by a mathematical model of the tube, involving 1-D linear acoustic waves and a time delay heat release model. Based on the measured OLTF, a controller to stabilise the instability was designed using Nyquist techniques. This was implemented and was seen to result in an 80dB reduction in the microphone pressure spectrum. A robustness study was performed by adding an additional length to the top of the Rijke tobe. The controller was found to achieve control up to an increase in tube length of 19%. This compared favourably with the empirical controller, which lost control for an increase in tube length of less than 3%.
Resumo:
Model Predictive Control (MPC) represents a major paradigm shift in the field of automatic control. This radically affects synthesis techniques (illustrated by control of an unstable system) and underlying concepts (illustrated by control of a multivariable system), as well as lifting the control engineer's focus from prescriptions to specifications ('what' not 'how', illustrated by emulation of a conventional autopilot). Part of the objective of this paper is to emphasize the significance of this paradigm shift. Another part is to consider the fact that this shift was missed for many years by the academic community, and what this tells us about teaching and research in the field.
Resumo:
This paper reports on the use of a parallelised Model Predictive Control, Sequential Monte Carlo algorithm for solving the problem of conflict resolution and aircraft trajectory control in air traffic management specifically around the terminal manoeuvring area of an airport. The target problem is nonlinear, highly constrained, non-convex and uses a single decision-maker with multiple aircraft. The implementation includes a spatio-temporal wind model and rolling window simulations for realistic ongoing scenarios. The method is capable of handling arriving and departing aircraft simultaneously including some with very low fuel remaining. A novel flow field is proposed to smooth the approach trajectories for arriving aircraft and all trajectories are planned in three dimensions. Massive parallelisation of the algorithm allows solution speeds to approach those required for real-time use.
Resumo:
Self-excited oscillation is becoming a major issue in low-emission, lean partially premixed combustion systems, and active control has been shown to be a feasible method to suppress such instabilities. A number of robust control methods are employed to obtain a feedback controller and it is observed that the robustness to system uncertainty is significantly better for a low complexity controller in spite of the norms being similar. Moreover, we demonstrate that closed-loop stability for such a complex system can be proved via use of the integral quadratic constraint method. Open- and closed-loop nonlinear simulations are provided. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
A dynamic model and control system of an artificial muscle is presented. The artificial muscle is based on a contractile polymer gel which undergoes abrupt volume changes in response to variations in external conditions. The device uses an acid-base reaction to directly convert chemical to mechanical energy. A nonlinear sliding mode control system is proposed to track desired joint trajectories of a single link controlled by two antagonist muscles. Both the model and controller were implemented and produced acceptable tracking performance at 2Hz.
Resumo:
A massive change is currently taking place in the manner in which power networks are operated. Traditionally, power networks consisted of large power stations which were controlled from centralised locations. The trend in modern power networks is for generated power to be produced by a diverse array of energy sources which are spread over a large geographical area. As a result, controlling these systems from a centralised controller is impractical. Thus, future power networks will be controlled by a large number of intelligent distributed controllers which must work together to coordinate their actions. The term Smart Grid is the umbrella term used to denote this combination of power systems, artificial intelligence, and communications engineering. This thesis focuses on the application of optimal control techniques to Smart Grids with a focus in particular on iterative distributed MPC. A novel convergence and stability proof for iterative distributed MPC based on the Alternating Direction Method of Multipliers is derived. Distributed and centralised MPC, and an optimised PID controllers' performance are then compared when applied to a highly interconnected, nonlinear, MIMO testbed based on a part of the Nordic power grid. Finally, a novel tuning algorithm is proposed for iterative distributed MPC which simultaneously optimises both the closed loop performance and the communication overhead associated with the desired control.
Resumo:
In this paper a parallel implementation of an Adaprtive Generalized Predictive Control (AGPC) algorithm is presented. Since the AGPC algorithm needs to be fed with knowledge of the plant transfer function, the parallelization of a standard Recursive Least Squares (RLS) estimator and a GPC predictor is discussed here.