911 resultados para Mobile robots control
Resumo:
Quadrotors aircraft are composed by four propellers mounted on four engines on a cross or x disposition, and, in this structure, the engines on the same arm spin in the same direction and the other arm in the opposite direction. By rotating each helix generates vertical upward thrust. The control is done by varying the rotational speed of each motor. Among the advantages of this type of vehicle can cite the mechanical simplicity of construction, the high degree of maneuverability and the ability to have vertical takeoffs and landings. The modeling and control of quadrirrotores have been a challenge due to problems such as nonlinearity and coupling between variables. Several strategies have been developed to control this type of vehicle, from the classical control to modern. There are air surveillance applications where a camera is fixed on the vehicle to point forward, where it is desired that the quadrotor moves at a fixed altitude toward the target also pointing forward, which imposes an artificial constraint motion, because it is not desired that it moves laterally, but only forwards or backwards and around its axes . This restriction is similar to the naturally existing on robots powered by wheels with differential drive, which also can not move laterally, due to the friction of the wheels. Therefore, a position control strategy similar to that used in this type of robot could be adapted for aerial robots like quadrotor. This dissertation presents and discusses some strategies for the control of position and orientation of quadrotors found in the literature and proposes a strategy based on dynamic control of mobile robots with differential drive, called the variable reference control. The validity of the proposed strategy is demonstrated through computer simulations
Resumo:
This project aims to apply image processing techniques in computer vision featuring an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained.
ANN statistical image recognition method for computer vision in agricultural mobile robot navigation
Resumo:
The main application area in this project, is to deploy image processing and segmentation techniques in computer vision through an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. Thereby, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for image recognition. Hence, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave computational platforms, along with the application of customized Back-propagation Multilayer Perceptron (MLP) algorithm and statistical methods as structured heuristics methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of segmented images in which reasonably accurate results were obtained. © 2010 IEEE.
Resumo:
In this project, the main focus is to apply image processing techniques in computer vision through an omnidirectional vision system to agricultural mobile robots (AMR) used for trajectory navigation problems, as well as localization matters. To carry through this task, computational methods based on the JSEG algorithm were used to provide the classification and the characterization of such problems, together with Artificial Neural Networks (ANN) for pattern recognition. Therefore, it was possible to run simulations and carry out analyses of the performance of JSEG image segmentation technique through Matlab/Octave platforms, along with the application of customized Back-propagation algorithm and statistical methods as structured heuristics methods in a Simulink environment. Having the aforementioned procedures been done, it was practicable to classify and also characterize the HSV space color segments, not to mention allow the recognition of patterns in which reasonably accurate results were obtained. ©2010 IEEE.
Resumo:
This work presents the development and integration of an user interface (UI) framework based on various current input devices that take advantage of our ergonomics. The purpose is to teleoperate a holonomic robot using upper member gestures and postures for studying the suitable of such interfaces when programming and interacting with a mobile robot. As performance vary from UI to UI the framework is focused to be used as a complementary industrial or didactic tool thus, changing how inexperience users tackle their first impressions when working with mobile robots while performing simple gesture-based teleoperation tasks. © 2012 ICROS.
Resumo:
Multisensor data fusion is a technique that combines the readings of multiple sensors to detect some phenomenon. Data fusion applications are numerous and they can be used in smart buildings, environment monitoring, industry and defense applications. The main goal of multisensor data fusion is to minimize false alarms and maximize the probability of detection based on the detection of multiple sensors. In this paper a local data fusion algorithm based on luminosity, temperature and flame for fire detection is presented. The data fusion approach was embedded in a low cost mobile robot. The prototype test validation has indicated that our approach can detect fire occurrence. Moreover, the low cost project allow the development of robots that could be discarded in their fire detection missions. © 2013 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Esta dissertação de mestrado apresenta o projeto e a construção de um robô móvel terrestre denominado LOGBOT, com tração de movimento do tipo diferencial – com duas rodas motoras e uma roda livre para manter a estabilidade de sua estrutura em relação à superfície. O controle do robô dispõe dos modos de telemetria e autônomo. No modo de controle por telemetria (ROV), a comunicação do robô com a estação de controle é feita por radiofreqüência a uma distância de até um quilometro em ambientes externos, e até cem metros em ambientes internos. No modo de controle autônomo (AGV), o robô tem habilidade para navegar em ambientes internos e desconhecidos usando sempre a parede à sua esquerda como referência para a trajetória de seu movimento. A seqüência de movimentos para execução da trajetória é enviada para a estação de controle que realiza análises de desempenho do robô. Para executar suas tarefas no modo autônomo, a programação do robô conta com um agente inteligente reativo, que detecta características do ambiente (obstáculos, final de paredes, etc.) e decide sobre qual atitude deve ser executada pelo robô, com objetivo de contornar os obstáculos e controlar a velocidade de suas rodas. Os problemas de erro odométrico e suas correções com base no uso de informações sensoriais externas são devidamente tratados. Técnicas de controle hierárquico do robô como um todo e controle em malha fechada da velocidade das rodas do robô são usadas. Os resultados mostraram que o robô móvel LOGBOT é capaz de navegar, com estabilidade e precisão, em ambientes internos no formato de um corredor (wall following).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This project is comprised by an interactive mobile robotics’ environment, focused in human-robot interaction. The system was developed to work in a smartphone, with Android operating system, embedded in a small size mobile robot. Information provided by the smartphone’s camera and microp hone, as well as by proximity sensors embedded in the robot, is used as inputs of a control architecture, implemented in software. It is a behavior-based and receptive to human commands control architecture, to assist the robot’s navigation. The robot is controlled by its own behaviors or by commands em it ted by humans
Resumo:
In this work was developed a program capable of performing automatic counting of vehicles on roads. The problem of counting vehicles is using expensive techniques for its realization, techniques which often involve manual counting or degradation of the pavement. The main motivation for this work was the importance that the vehicle counting represents to the Traffic Engineer, being essential to analyze the performance of the roads, allowing to measure the need for installation of traffic lights, roundabouts, access ways, among other means capable of ensuring a continuous flow and safe for vehicles. The main objective of this work was to apply a statistical segmentation technique recently developed, based on a nonparametric linear regression model, to solve the segmentation problem of the program counter. The development program was based on the creation of three major modules, one for the segmentation, another for the tracking and another for the recognition. For the development of the segmentation module, it was applied a statistical technique combined with the segmentation by background difference, in order to optimize the process. The tracking module was developed based on the use of Kalman filters and application of simple concepts of analytical geometry. To develop the recognition module, it was used Fourier descriptors and a neural network multilayer perceptron, trained by backpropagation. Besides the development of the modules, it was also developed a control logic capable of performing the interconnection among the modules, mainly based on a data structure called state. The analysis of the results was applied to the program counter and its component modules, and the individual analysis served as a means to establish the par ameter values of techniques used. The find result was positive, since the statistical segmentation technique proved to be very useful and the developed program was able to count the vehicles belonging to the three goal..
Resumo:
The use of mobile robots in the agriculture turns out to be interesting in tasks of cultivation and application of pesticides in minute quantities to reduce environmental pollution. In this paper we present the development of a system to control an autonomous mobile robot navigation through tracks in plantations. Track images are used to control robot direction by preprocessing them to extract image features, and then submitting such characteristic features to a support vector machine to find out the most appropriate route. As the overall goal of the project to which this work is connected is the robot control in real time, the system will be embedded onto a hardware platform. However, in this paper we report the software implementation of a support vector machine, which so far presented around 93% accuracy in predicting the appropriate route.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
The complexity in the execution of cooperative tasks is high due to the fact that a robot team requires movement coordination at the beginning of the mission and continuous coordination during the execution of the task. A variety of techniques have been proposed to give a solution to this problem assuming standard mobile robots. This work focuses on presenting the execution of a cooperative task by a modular robot team. The complexity of the task execution increases due to the fact that each robot is composed of modules which have to be coordinated in a proper way to successfully work. A combined tight and loose cooperation strategy is presented and a bar-pushing example is used as a cooperative task to show the performance of this type of system.
Resumo:
In recent decades, there has been an increasing interest in systems comprised of several autonomous mobile robots, and as a result, there has been a substantial amount of development in the eld of Articial Intelligence, especially in Robotics. There are several studies in the literature by some researchers from the scientic community that focus on the creation of intelligent machines and devices capable to imitate the functions and movements of living beings. Multi-Robot Systems (MRS) can often deal with tasks that are dicult, if not impossible, to be accomplished by a single robot. In the context of MRS, one of the main challenges is the need to control, coordinate and synchronize the operation of multiple robots to perform a specic task. This requires the development of new strategies and methods which allow us to obtain the desired system behavior in a formal and concise way. This PhD thesis aims to study the coordination of multi-robot systems, in particular, addresses the problem of the distribution of heterogeneous multi-tasks. The main interest in these systems is to understand how from simple rules inspired by the division of labor in social insects, a group of robots can perform tasks in an organized and coordinated way. We are mainly interested on truly distributed or decentralized solutions in which the robots themselves, autonomously and in an individual manner, select a particular task so that all tasks are optimally distributed. In general, to perform the multi-tasks distribution among a team of robots, they have to synchronize their actions and exchange information. Under this approach we can speak of multi-tasks selection instead of multi-tasks assignment, which means, that the agents or robots select the tasks instead of being assigned a task by a central controller. The key element in these algorithms is the estimation ix of the stimuli and the adaptive update of the thresholds. This means that each robot performs this estimate locally depending on the load or the number of pending tasks to be performed. In addition, it is very interesting the evaluation of the results in function in each approach, comparing the results obtained by the introducing noise in the number of pending loads, with the purpose of simulate the robot's error in estimating the real number of pending tasks. The main contribution of this thesis can be found in the approach based on self-organization and division of labor in social insects. An experimental scenario for the coordination problem among multiple robots, the robustness of the approaches and the generation of dynamic tasks have been presented and discussed. The particular issues studied are: Threshold models: It presents the experiments conducted to test the response threshold model with the objective to analyze the system performance index, for the problem of the distribution of heterogeneous multitasks in multi-robot systems; also has been introduced additive noise in the number of pending loads and has been generated dynamic tasks over time. Learning automata methods: It describes the experiments to test the learning automata-based probabilistic algorithms. The approach was tested to evaluate the system performance index with additive noise and with dynamic tasks generation for the same problem of the distribution of heterogeneous multi-tasks in multi-robot systems. Ant colony optimization: The goal of the experiments presented is to test the ant colony optimization-based deterministic algorithms, to achieve the distribution of heterogeneous multi-tasks in multi-robot systems. In the experiments performed, the system performance index is evaluated by introducing additive noise and dynamic tasks generation over time.