942 resultados para Mcm-41 Molecular-sieves
Resumo:
We have determined that gene HI#1181 of Haemophilus influenzae is a homolog of Escherichia coli gmhA (previously designated lpcA) (J. S. Brooke and M. A. Valvano, J. Biol. Chem. 271:3608-3614, 1996), which encodes a phosphoheptose isomerase catalyzing the first step of the biosynthesis of ADP-L-glycero-D-manno heptose. Mutations in this gene are associated with a heptoseless core lipopolysaccharide which determines an increased outer membrane permeability to hydrophobic compounds. The cloned H. influenzae gmhA restored the synthesis of a complete core in the gmhA-deleted E. coli strain chi711. Amino acid sequence comparisons of the GmhA proteins of E. coli and H. influenzae with other proteins in the databases revealed the existence of a novel family of phosphosugar a1do-keto isomerases.
Resumo:
Os materiais microporosos e mesoporosos são potenciais catalisadores heterogéneos. Os zeólitos e outros materiais microporosos do tipo zeolítico tradicionais, têm átomos tetracoordenados no esqueleto. Nos últimos anos, um vasto número de titanossilicatos contendo Ti(IV) hexacoordenado e Si(IV) tetracoordenado, com estruturas tridimensionais, têm sido alvo de grande interesse. Um dos objectivos desta tese foi preparar silicatos microporosos, contendo átomos metálicos com número de coordenação superior a quatro, e possuindo quer novas estruturas quer propriedades físicas e químicas interessantes. Neste contexto, foi preparado um novo ítriossilicato de sódio, AV-1, análogo do raro mineral montregianite, Na4K2Y2Si16O38·10H2O. Este material é o primeiro sólido microporoso que contem quantidades estequiométricas de sódio (e ítrio) no esqueleto. Foi, também, sintetizado um silicato de cério, AV-5, análogo estrutural do mineral montregianite com potencial aplicação em optoelectrónica. Nesta tese é, ainda, descrita a síntese e caracterização estrutural de um silicato de cálcio hidratado, AV-2, análogo do raro mineral rhodesite (K2Ca4Na2Si16O38.12H2O). Na continuação do trabalho desenvolvido em Aveiro na síntese de novos titanossilicatos surgiu o interesse de preparar novos zirconossilicatos microporosos por síntese hidrotérmica. Foram preparados dois novos materiais análogos dos minerais petarasite Na5Zr2Si3O18(Cl,OH)·2H2O (AV-3) e kostylevite, K2Si3O9·H2O (AV-8). Foram, também, obtidos análogos sintéticos dos minerais parakeldyshite e wadeite, por calcinação a alta temperatura de AV-3 e de umbite sintética. A heterogeneização de complexos organometálicos na superfície de materiais mesoporosos do tipo M41S permite associar a grande actividade catalítica e a presença de sítios activos localizados típicos dos complexos organometálicos, com a robustez e fácil separação, características dos materiais mesoporosos siliciosos. Nesta dissertação relata-se a derivatização dos materiais MCM-41 e MCM-48 através da reacção de [SiMe2{(h5-C5H4)2}]Fe e [SiMe2{(h5-C5H4)2}]TiCl2 com os grupos silanol das superfícies mesoporosas. Os materiais MCMs derivatizados com ansa-titanoceno foram testados na epoxidação de cicloocteno a 323 K na presença de hidrogenoperóxido de t-butilo. Estudou-se a heterogeneização dos sais de complexos com ligação metal-metal [Mo2(MeCN)10][BF4]4, [Mo2(m-O2CMe)2(MeCN)6][BF4]2 e [Mo2(m- O2CMe)2(dppa)2(MeCN)2][BF4]2 via imobilização nos canais do MCM-41. A imobilização dos catalisadores homogéneos na superfície do MCM-41 envolve a saída dos ligandos nitrilo lábeis, preferencialmente em posição axial, através da reacção com os grupos Si-OH da sílica. Verificou-se que a ligação Mo-Mo se mantém intacta nos produtos finais. É provável que estes materiais sejam eficientes catalisadores heterogéneos em reacções de polimerização. As técnicas de caracterização utilizadas nesta tese foram a difracção de raios-X de pós, a microscopia electrónica de varrimento, a espectroscopia de ressonância magnética nuclear do estado sólido (núcleos 13C, 23Na e 29Si), as espectroscopias de Raman e infravermelho com transformadas de Fourier, as análises termogravimétricas e as análises de adsorção de água e azoto.
Resumo:
As sínteses, caracterizações e estudos referentes a polimerização do etileno de uma série de complexos {TpMs*}V(NtBu)Cl2 (1), {TpMs*}V(O)Cl2 (2), {TpMePh]V(NtBu)Cl2 (3) e {Tp*}V(O)Cl2 (4) são descritas. A reação destes complexos com MAO geram espécies catalíticas ativas para a polimerização do etileno. Para as reações de polimerização realizadas em tolueno a 30°C, as atividades variaram entre 71 e 1.126 kg de PE/mol[V]·h·atm. A atividade mais alta foi obtida usando o precursor catalítico 1. As curvas de DSC mostraram a formação de polietileno de alta densidade com temperaturas de fusão entre 134 e 141ºC. Visando a obtenção de catalisadores suportados, o complexo 1 foi imobilizado através do método direto sobre os seguintes suportes inorgânicos: SiO2, SiO2 modificada com MAO, SiO2-Al2O3, MCM-41, MgO e MgCl2. O teor de metal imobilizado, determinado por XRF, permaneceu entre 0,22 e 0,50 % g V/g suporte (p/p %).Os maiores teores de metal foram encontrados para os suportes com maiores áreas superficiais (SiO2–Al2O3 e MCM-41). Todos os sistemas mostraram-se ativos na polimerização do etileno na presença de MAO ou TiBA/MAO (1:1) (Al/V = 1000). A atividade catalítica mostrou-se dependente da natureza do suporte, ficando esta entre 8 e 89 kg de PE/mol[V]·h·atm. Os melhores resultados foram obtidos para sílica. Suportes ácidos ou básicos forneceram sistemas catalíticos menos ativos. Os polietilenos apresentaram pesos moleculares médios (Mw) superiores a 2.000.000 g/mol, sugerindo a produção de polímeros com ultra-alto peso molecular. Baseado nos resultados referentes a imobilização de 1, o complexo 2 foi imobilizado sobre SiO2 e SiO2 modificada com MAO. As reações de polimerização deste catalisador suportado foram realizadas em tolueno a 30ºC, utilizando MAO ou TiBA/MAO (1:1) (Al/V = 1000). Os resultados de atividade variaram entre 7 e 236 kg de PE/mol[V]·h·atm, sendo a maior atividade encontrada para o sistema suportado 2/SiO2/MAO(4,0 % Al/SiO2) na presença da mistura de cocatalisadores TiBA/MAO (1:1). Os complexos 1 e 2 foram imobilizados “in situ” utilizando SiO2 e SiO2/MAO (4,0 % em peso de Al/SiO2) como suportes, empregando 0,02 % em peso de V/g suporte. Todos os sistemas estudados foram ativos nas reações de polimerização do etileno. Para o complexo 1, a maior atividade (1.903 kg de PE/mol[V]·h·atm) foi obtida utilizando o sistema 1/SiO2/MAO (4,0 % em peso de Al/SiO2) na presença do MAO. Cabe ressaltar que, para este sistema catalítico, o uso de TMA ao invés de MAO proporciona a formação de um sistema catalítico altamente ativo (1.342 kg de PE/mol[V]·h·atm). A maior atividade (1.882 kg de PE/mol[V]·h·atm) para o complexo 2 foi encontrada quando o mesmo foi suportado “in situ” sobre SiO2, utilizando MAO como cocatalisador. O catalisador de vanádio preparado “in situ” sobre o suporte na presença do MAO apresentou uma atividade catalítica de 22 kg de PE/mol[V]·h·atm) sendo a mesma inferior àquela obtida utilizando o sistema via imobilização do catalisador “in situ”. Várias rotas sintéticas (hidrolíticas e não-hidrolíticas) objetivando a preparação “in situ” do catalisador sobre sílicas-híbridas foram empregadas, entretanto todas as tentativas falharam devido à alta reatividade do grupo NCO com alguns reagentes empregados no processo de preparação das mesmas. Uma série de catalisadores híbridos foram preparados pela combinação e imobilização seqüencial de {TpMs*}V(NtBu)Cl2 (1) e [LFeCl2] (8) (L = 2,6-bis(imino)piridila) sobre SiO2/MAO (4,0% em peso de Al/SiO2) em diferentes proporções (1:1) e (1:3). Todos os sistemas foram ativos na polimerização do etileno na presença de MAO como cocatalisador. A atividade mostrou-se dependente da natureza do complexo e da ordem de imobilização. A maior atividade foi obtida para o sistema V/Fe/SMAO-4 (1:1) (117 kg de PE/mol[M]·h·atm). Baseado nas curvas de DSC, diferentes tipos de PE podem ser obtidos dependendo da natureza do complexo imobilizado e da ordem da adição dos catalisadores no suporte. Para os sistemas híbridos, a presença do Fe determina a formação de PE com dois picos de fusão.
Resumo:
Due to environmental restrictions around the world, clean catalytic technology are of fundamental importance in the petrochemical industry and refineries. Creating the face of this a great interest in replacing the liquid acids for solid acids, so as molecular sieves have been extensively studied in reactions involving the acid catalysis to produce chemical substances with a high potential of quality. Being the activity of the catalysts involved in the reaction attributed to the acid character of them involved for the Lewis and Brönsted acid sites. Based on this context, this study aimed to prepare catalysts acids using a molecular sieve silicoalumino-phosphate (SAPO-11) synthesized in hidrotermical conditions and sulphated with sulphuric acid at different concentrations, using to it the method of controlled impregnating. The samples resulting from this process were characterized by x-ray difratometry (DRX), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermal analysis (TG-DTG) and determination of total acidity (by n-butilamin adsorption). The results show that the synthesis method used was efficient in the formation of AEL structure of SAPO-11 and when being incorporated the sulfate groups in this structure the acidity of the material was increased, pointing out that to very high concentrations of acid there is a trend of decrease the main peaks that form the structure. Finally they were tested catalytictly by the reaction model of conversion of m-xylene which showed favorable results of conversion for this catalyst, showing to be more selective of cracking products than isomerization, as expected, in order that for the o-xylene selectivity there was no positive change when to sulfate a sample of SAPO-11, while for light gases of C1-C4 this selectivity was remarkably observed
Resumo:
Heterogeneous catalysts such as aluminophosphate and silicoaluminophosphate, molecular sieves with AEL of ALPO-11 and SAPO-11, were synthesized by the hydrothermal method with the following molar composition: 2.9 Al +3.2 P + 3.5 DIPA +32.5 H20 (ALPO-11); 2.9 Al +3.2 P + 0.5 Si + 3.5 DIPA +32.5 H20 (SAPO-11) starting from silica (only in the SAPO-11), pseudoboehmite, orthophosphoric acid (85%) and water, in the presence of a di-isopropylamine organic template. The crystallization process occurred when the reactive hydrogel was charged into a vessel and autoclaved at 170ºC for a period of 48 hours under autogeneous pressure. The obtained materials were washed, dried and calcined to remove the molecular sieves of DIPA. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), thermo gravimetric differential thermal analysis (TG/DTA) and nitrogen adsorption (BET). The acidic properties were determined using adsorption of n-butylamine followed by programmed thermodessorption. This method revealed that ALPO-11 has weaker acid sites due to structural defects, while SAPO-11 shows an acidity that ranges from weak to moderate. However, a small quantity of strong acid sites could be detected there. The deactivation of the catalysts was conducted by the cracking of the n-hexane in a fixed bed continuous flow microrreator coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the regeneration and removal of the organic template
Resumo:
Statistics of environmental protection agencies show that the soil has been contaminated with problems often resulting from leaks, spills and accidents during exploration, refining, transportation and storage oil operations and its derivatives. These, gasoline noteworthy, verified by releasing, to get in touch with the groundwater, the compounds BTEX (benzene, toluene, ethylbenzene and xylenes), substances which are central nervous system depressants and causing leukemia. Among the processes used in remediation of soil and groundwater contaminated with organic pollutants, we highlight those that use hydrogen peroxide because they are characterized by the rapid generation of chemical species of high oxidation power, especially the hydroxyl radical ( OH), superoxide (O2 -) and peridroxil (HO2 ), among other reactive species that are capable of transforming or decomposing organic chemicals. The pH has a strong effect on the chemistry of hydrogen peroxide because the formation of different radicals directly depends on the pH of the medium. In this work, the materials MCM-41 and Co-MCM-41 were synthesized and used in the reaction of BTEX removal in aqueous media using H2O2. These materials were synthesized by the hydrothermal method and the techniques used to characterize were: XRD, TG/DTG, adsorption/desorption N2, TEM and X-Ray Fluorescence. The catalytic tests were for 5 h of reaction were carried out in reactors of 20 mL, which was accompanied by the decomposition of hydrogen peroxide by molecular absorption spectrophotometry in the UV-Vis, in addition to removal of organic compounds BTEX was performed as gas chromatography with detection photoionization and flame ionization and by static headspace sampler. The characterizations proved that the materials were successfully synthesized. The catalytic tests showed satisfactory results, and the reactions containing BTEX + Co-MCM-41 + H2O2 at pH = 12.0 had the highest percentages of removal for the compounds studied
Resumo:
The AlMCM-41 material with Si/Al=50 was synthesized by hydrothermal method, using cethyltrimethylammonium as template. The protonic H-AlMCM-41 acid form was obtained by ion exchange with ammonium chloride solution and subsequent calcination. The characterization of the material by several techniques showed that a good-quality MCM-41 material was obtained. High-density polyethylene (HDPE) has been submitted to thermal degradation alone, and in presence of the exchanged H-AlMCM-41 catalyst at a concentration of 1: 1 in mass (H-AlMCM-41/HDPE). The reactor was connected on line to a gas chromatograph connected to a mass spectrometer. This process was evaluated by thermogravimetry (TG), from 350 to 600degreesC, under helium dynamic atmosphere, with heating rates of 5.0; 10.0 and 20.0 degreesC/min. From TG curves, the activation energy, calculated using a multiple heating rate integral kinetic method, decreased from 225.5 KJ.mol(-1), for the pure polymer (HDPE), to 184.7 KJ.mol(-1), in the presence of the catalyst (H-AlMCM-41/HDPE).
Resumo:
Nell’ambito della Chimica Sostenibile e dell’applicazione dei suoi principi per la salvaguardia dell’ambiente, il progetto di dottorato ha riguardato lo sviluppo di materiali innovativi e lo studio della loro interazione con sistemi biologici e biomimetici. In particolare l’attività si è focalizzata sulla sintesi di liquidi ionici ed indagini delle interazioni con membrane cellulari e sull’utilizzo ed isolamento di molecole da fonti rinnovabili. I liquidi ionici sono sali organici liquidi a temperature inferiori ai 100 °C; sono considerati promettenti solventi a ridotta tossicità, ma vanno chiarite a pieno le modalità di interazione con i sistemi biologici ed i meccanismi di tossicità. A questo scopo è stata impiegata una batteria di test bio-chimici, con saggi di fluorescenza e colorimetrici, che hanno permesso di discriminare le diverse tipologie di interazioni con varie strutture di membrana. Le informazioni raccolte sono servite per progettare sostanze meno dannose per le strutture cellulari, al fine di scegliere le funzionalità molecolari che consentano ai liquidi ionici di mantenere la loro attività ma di essere meno dannosi per l’ambiente. Per quanto riguarda l’utilizzo ed isolamento di molecole da fonte rinnovabili, si è utilizzata la tecnica della pirolisi per l’ottenimento di starting materials ed il loro impiego nella sintesi di chemicals in alternativa a composti derivanti da fonti fossili. La pirolisi tradizionale della cellulosa fornisce una molecola interessante, per semplicità denominata LAC, in quantità insufficienti ad un uso applicativo. Nell’ambito delle ricerche svolte è stato scoperto che la pirolisi condotta in presenza di catalizzatori meso-strutturati (MCM-41) drogati con metalli di transizione, fornisce buone quantità di LAC. LAC si è dimostrato promettente sia per la produzione di nuove molecole con possibili applicazioni nella chimica fine e farmaceutica, che come monomero per nuovi polimeri (copolimero ed omopolimero).
Resumo:
The diffusion of hexane, heptane, octane, and decane in nanoporous MCM-41 silica at various temperatures is investigated by the zero-length-column method. The diffusion coefficients are derived by a complete-time-range analysis of desorption curves at different purge flow rates and temperatures. The results show that the calculated low-coverage diffusivity values decrease monotonically, and the derived Henry's law constants increase, as the carbon number of paraffins increases. The study reveals that transport is strongly influenced by intracrystalline diffusion and dominated by the sorbate-sorbent interaction. The diffusion activation energy and adsorption isosteric heat at zero loading increase monotonically with the carbon number of linear paraffins, but their ratio is essentially constant for each adsorbate compound.
Resumo:
Equilibrium adsorption and desorption in mesoporous adsorbents is considered on the basis of rigorous thermodynamic analysis, in which the curvature-dependent solid-fluid potential and the compressibility of the adsorbed phase are accounted for. The compressibility of the adsorbed phase is considered for the first time in the literature in the framework of a rigorous thermodynamic approach. Our model is a further development of continuum thermodynamic approaches proposed by Derjaguin and Broekhoff and de Boer, and it is based on a reference isotherm of a non-porous material having the same chemical structure as that of the pore wall. In this improved thermodynamic model, we incorporated a prescription for transforming the solid-fluid potential exerted by the flat reference surface to the potential inside cylindrical and spherical pores. We relax the assumption that the adsorbed film density is constant and equal to that of the saturated liquid. Instead, the density of the adsorbed fluid is allowed to vary over the adsorbed film thickness and is calculated by an equation of state. As a result, the model is capable to describe the adsorption-desorption reversibility in cylindrical pores having diameter less than 2 nm. The generalized thermodynamic model may be applied to the pore size characterization of mesoporous materials instead of much more time-consuming molecular approaches. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A series of propylsulfonic (MCM-SOH) and octyl co-functionalised propylsulfonic (MCM-Oc-SOH) catalysts have been prepared by post modification of MCM-41 with mercaptopropyltrimethoxysilane (MPTS) to achieve SOH surface coverages spanning the range 0.12-1 monolayer. Within the MCM-Oc-SOH series, samples with submonolayer MPTS coverages were further grafted with octyltrimethoxysilane to cap bare hydroxyl sites and tune the hydrophobicity of the support. For the MCM-SO H series NH calorimetry revealed acid strength increases as a function of sulfonic acid loading, with -ΔH(NH ) increasing from 87 to 118 kJ mol. In contrast, MCM-Oc-SOH exhibits a dramatic enhancement of acid strength for submonolayer SOH coverages, with -ΔH(NH ) found to increase to 103 kJ mol. In line with these acid strength measurements the per-site activity of the MCM-SOH series in the esterification of butanol with acetic acid was found to increase with SOH content. Incorporation of octyl groups further promotes esterification activity of all the samples within the MCM-Oc-SOH series, such that the turn over frequency of the sample with the lowest loading of SOH more than doubles. Molecular dynamic simulations indicate that the interaction of isolated sulfonic acid groups with the pore walls is the primary cause of the decrease in acid strength and activity of submonolayer samples within the MCM-SOH series. Incorporation of octyl groups results in a combination of increased hydrophobicity and lateral interactions between adjacent sulfonic acid head groups, resulting in a striking enhancement of acid strength and esterification activity. © 2010 The Royal Society of Chemistry.
Resumo:
Hydrogen has been considered as a potentially efficient and environmentally friendly alternative energy solution. However, one of the most important scientific and technical challenges that the "hydrogen economy" faces is the development of safe and economically viable on-board hydrogen storage for fuel cell applications, especially to the transportation sector. Ammonia borane (BH3NH 3), a solid state hydrogen storage material, possesses exceptionally high hydrogen content (19.6 wt%).However, a fairly high temperature is required to release all the hydrogen atoms, along with the emission of toxic borazine. Recently research interests are focusing on the improvement of H2 discharge from ammonia borane (AB) including lowering the dehydrogenation temperature and enhancing hydrogen release rate using different techniques. Till now the detailed information about the bonding characteristics of AB is not sufficient to understand details about its phases and structures. ^ Elemental substitution of ammonia borane produces metal amidoboranes. Introduction of metal atoms to the ammonia borane structure may alter the bonding characteristics. Lithium amidoborane is synthesized by ball milling of ammonia borane and lithium hydride. High pressure study of molecular crystal provides unique insight into the intermolecular bonding forces and phase stability. During this dissertation, Raman spectroscopic study of lithium amidoborane has been carried out at high pressure in a diamond anvil cell. It has been identified that there is no dihydrogen bond in the lithium amidoborane structure, whereas dihydrogen bond is the characteristic bond of the parent compound ammonia borane. It has also been identified that the B-H bond becomes weaker, whereas B-N and N-H bonds become stronger than those in the parent compound ammonia borane. At high pressure up to 15 GPa, Raman spectroscopic study indicates two phase transformations of lithium amidoborane, whereas synchrotron X-ray diffraction data indicates only one phase transformation of this material. ^ Pressure and temperature has a significant effect on the structural stability of ammonia borane. This dissertation explored the phase transformation behavior of ammonia borane at high pressure and low temperature using in situ Raman spectroscopy. The P-T phase boundary between the tetragonal (I4mm) and orthorhombic (Pmn21) phases of ammonia borane has been determined. The transition has a positive Clapeyron slope which indicates the transition is of exothermic in nature. Influence of nanoconfinemment on the I4mm to Pmn2 1 phase transition of ammonia borane was also investigated. Mesoporus silica scaffolds SBA-15 with pore size of ~8 nm and MCM-41 with pore size of 2.1-2.7 nm, were used to nanoconfine ammonia borane. During cooling down, the I4mm to Pmn21 phase transition was not observed in MCM-41 nanoconfined ammonia borane, whereas the SBA-15 nanocondfined ammonia borane shows the phase transition at ~195 K. Four new phases of ammonia borane were also identified at high pressure up to 15 GPa and low temperature down to 90 K.^
Resumo:
Hydrogen has been considered as a potentially efficient and environmentally friendly alternative energy solution. However, one of the most important scientific and technical challenges that the “hydrogen economy” faces is the development of safe and economically viable on-board hydrogen storage for fuel cell applications, especially to the transportation sector. Ammonia borane (BH3NH3), a solid state hydrogen storage material, possesses exceptionally high hydrogen content (19.6 wt%).However, a fairly high temperature is required to release all the hydrogen atoms, along with the emission of toxic borazine. Recently research interests are focusing on the improvement of H2 discharge from ammonia borane (AB) including lowering the dehydrogenation temperature and enhancing hydrogen release rate using different techniques. Till now the detailed information about the bonding characteristics of AB is not sufficient to understand details about its phases and structures. Elemental substitution of ammonia borane produces metal amidoboranes. Introduction of metal atoms to the ammonia borane structure may alter the bonding characteristics. Lithium amidoborane is synthesized by ball milling of ammonia borane and lithium hydride. High pressure study of molecular crystal provides unique insight into the intermolecular bonding forces and phase stability. During this dissertation, Raman spectroscopic study of lithium amidoborane has been carried out at high pressure in a diamond anvil cell. It has been identified that there is no dihydrogen bond in the lithium amidoborane structure, whereas dihydrogen bond is the characteristic bond of the parent compound ammonia borane. It has also been identified that the B-H bond becomes weaker, whereas B-N and N-H bonds become stronger than those in the parent compound ammonia borane. At high pressure up to 15 GPa, Raman spectroscopic study indicates two phase transformations of lithium amidoborane, whereas synchrotron X-ray diffraction data indicates only one phase transformation of this material. Pressure and temperature has a significant effect on the structural stability of ammonia borane. This dissertation explored the phase transformation behavior of ammonia borane at high pressure and low temperature using in situ Raman spectroscopy. The P-T phase boundary between the tetragonal (I4mm) and orthorhombic (Pmn21) phases of ammonia borane has been determined. The transition has a positive Clapeyron slope which indicates the transition is of exothermic in nature. Influence of nanoconfinemment on the I4mm to Pmn21 phase transition of ammonia borane was also investigated. Mesoporus silica scaffolds SBA-15 with pore size of ~8 nm and MCM-41 with pore size of 2.1-2.7 nm, were used to nanoconfine ammonia borane. During cooling down, the I4mm to Pmn21 phase transition was not observed in MCM-41 nanoconfined ammonia borane, whereas the SBA-15 nanocondfined ammonia borane shows the phase transition at ~195 K. Four new phases of ammonia borane were also identified at high pressure up to 15 GPa and low temperature down to 90 K.
Resumo:
In the past 20 years, mesoporous materials have been attracted great attention due to their significant feature of large surface area, ordered mesoporous structure, tunable pore size and volume, and well-defined surface property. They have many potential applications, such as catalysis, adsorption/separation, biomedicine, etc. [1]. Recently, the studies of the applications of mesoporous materials have been expanded into the field of biomaterials science. A new class of bioactive glass, referred to as mesoporous bioactive glass (MBG), was first developed in 2004. This material has a highly ordered mesopore channel structure with a pore size ranging from 5–20 nm [1]. Compared to non-mesopore bioactive glass (BG), MBG possesses a more optimal surface area, pore volume and improved in vitro apatite mineralization in simulated body fluids [1,2]. Vallet-Regí et al. has systematically investigated the in vitro apatite formation of different types of mesoporous materials, and they demonstrated that an apatite-like layer can be formed on the surfaces of Mobil Composition of Matters (MCM)-48, hexagonal mesoporous silica (SBA-15), phosphorous-doped MCM-41, bioglass-containing MCM-41 and ordered mesoporous MBG, allowing their use in biomedical engineering for tissue regeneration [2-4]. Chang et al. has found that MBG particles can be used for a bioactive drug-delivery system [5,6]. Our study has shown that MBG powders, when incorporated into a poly (lactide-co-glycolide) (PLGA) film, significantly enhance the apatite-mineralization ability and cell response of PLGA films. compared to BG [7]. These studies suggest that MBG is a very promising bioactive material with respect to bone regeneration. It is known that for bone defect repair, tissue engineering represents an optional method by creating three-dimensional (3D) porous scaffolds which will have more advantages than powders or granules as 3D scaffolds will provide an interconnected macroporous network to allow cell migration, nutrient delivery, bone ingrowth, and eventually vascularization [8]. For this reason, we try to apply MBG for bone tissue engineering by developing MBG scaffolds. However, one of the main disadvantages of MBG scaffolds is their low mechanical strength and high brittleness; the other issue is that they have very quick degradation, which leads to an unstable surface for bone cell growth limiting their applications. Silk fibroin, as a new family of native biomaterials, has been widely studied for bone and cartilage repair applications in the form of pure silk or its composite scaffolds [9-14]. Compared to traditional synthetic polymer materials, such as PLGA and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), the chief advantage of silk fibroin is its water-soluble nature, which eliminates the need for organic solvents, that tend to be highly cytotoxic in the process of scaffold preparation [15]. Other advantages of silk scaffolds are their excellent mechanical properties, controllable biodegradability and cytocompatibility [15-17]. However, for the purposes of bone tissue engineering, the osteoconductivity of pure silk scaffolds is suboptimal. It is expected that combining MBG with silk to produce MBG/silk composite scaffolds would greatly improve their physiochemical and osteogenic properties for bone tissue engineering application. Therefore, in this chapter, we will introduce the research development of MBG/silk scaffolds for bone tissue engineering.
Resumo:
Isolated and purified organosolv eucalyptus wood lignin was depolymerized at different temperatures with and without mesostructured silica catalysts (i.e., SBA-15, MCM-41, ZrO2-SBA-15 and ZrO2-MCM-41). It was found that at 300 oC for 1 h with a solid/liquid ratio of 0.0175/1 (w/v), the SBA-15 catalyst with high acidity gave the highest syringol yield of 23.0% in a methanol/water mixture (50/50, wt/wt). Doping with ZrO2 over these catalysts did not increase syringol yield, but increased the total amount of solid residue. Gas chromatography-mass spectrometry (GC-MS) also identified other main phenolic compounds such as 1-(4-hydroxy-3,5-dimethoxyphenyl)-ethanone, 1,2-benzenediol, and 4-hydroxy-3,5-dimethoxy-benzaldehyde. Analysis of the lignin residues with Fourier transform-Infrared spectroscopy (FT-IR) indicated decreases in the absorption bands intensities of OH group, C-O stretching of syringyl ring and aromatic C-H deformation of syringol unit, and an increase in band intensities associated with the guaiacyl ring, confirming the type of products formed.