Diffusion of linear paraffins in nanoporous silica


Autoria(s): Qiao, S. Z.; Bhatia, S. K.
Contribuinte(s)

Donald R. Paul

Spiro D. Alexandratos

Data(s)

01/01/2005

Resumo

The diffusion of hexane, heptane, octane, and decane in nanoporous MCM-41 silica at various temperatures is investigated by the zero-length-column method. The diffusion coefficients are derived by a complete-time-range analysis of desorption curves at different purge flow rates and temperatures. The results show that the calculated low-coverage diffusivity values decrease monotonically, and the derived Henry's law constants increase, as the carbon number of paraffins increases. The study reveals that transport is strongly influenced by intracrystalline diffusion and dominated by the sorbate-sorbent interaction. The diffusion activation energy and adsorption isosteric heat at zero loading increase monotonically with the carbon number of linear paraffins, but their ratio is essentially constant for each adsorbate compound.

Identificador

http://espace.library.uq.edu.au/view/UQ:75030

Idioma(s)

eng

Publicador

American Chemical Society

Palavras-Chave #Engineering, Chemical #Length Column Method #Multicomponent Adsorption-kinetics #Activated Carbon #Surface-diffusion #Molecular-dynamics #Mcm-41 #Equilibrium #Alkanes #Prediction #Transport #C1 #290699 Chemical Engineering not elsewhere classified #690501 Ground transport
Tipo

Journal Article