767 resultados para Learning Analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benefits of long-term monitoring have drawn considerable attention in healthcare. Since the acquired data provides an important source of information to clinicians and researchers, the choice for long-term monitoring studies has become frequent. However, long-term monitoring can result in massive datasets, which makes the analysis of the acquired biosignals a challenge. In this case, visualization, which is a key point in signal analysis, presents several limitations and the annotations handling in which some machine learning algorithms depend on, turn out to be a complex task. In order to overcome these problems a novel web-based application for biosignals visualization and annotation in a fast and user friendly way was developed. This was possible through the study and implementation of a visualization model. The main process of this model, the visualization process, comprised the constitution of the domain problem, the abstraction design, the development of a multilevel visualization and the study and choice of the visualization techniques that better communicate the information carried by the data. In a second process, the visual encoding variables were the study target. Finally, the improved interaction exploration techniques were implemented where the annotation handling stands out. Three case studies are presented and discussed and a usability study supports the reliability of the implemented work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing use of information and communication technologies (ICT) in diverse professional and personal contexts calls for new knowledge, and a set of abilities, competences and attitudes, for an active and participative citizenship. In this context it is acknowledged that universities have an important role innovating in the educational use of digital media to promote an inclusive digital literacy. The educational potential of digital technologies and resources has been recognized by both researchers and practitioners. Multiple pedagogical models and research approaches have already contributed to put in evidence the importance of adapting instructional and learning practices and processes to concrete contexts and educational goals. Still, academic and scientific communities believe further investments in ICT research is needed in higher education. This study focuses on educational models that may contribute to support digital technology uses, where these can have cognitive and educational relevance when compared to analogical technologies. A teaching and learning model, centered in the active role of the students in the exploration, production, presentation and discussion of interactive multimedia materials, was developed and applied using the internet and exploring emergent semantic hypermedia formats. The research approach focused on the definition of design principles for developing class activities that were applied in three different iterations in undergraduate courses from two institutions, namely the University of Texas at Austin, USA and the University of Lisbon, Portugal. The analysis of this study made possible to evaluate the potential and efficacy of the model proposed and the authoring tool chosen in the support of metacognitive skills and attitudes related to information structuring and management, storytelling and communication, using computers and the internet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The computational power is increasing day by day. Despite that, there are some tasks that are still difficult or even impossible for a computer to perform. For example, while identifying a facial expression is easy for a human, for a computer it is an area in development. To tackle this and similar issues, crowdsourcing has grown as a way to use human computation in a large scale. Crowdsourcing is a novel approach to collect labels in a fast and cheap manner, by sourcing the labels from the crowds. However, these labels lack reliability since annotators are not guaranteed to have any expertise in the field. This fact has led to a new research area where we must create or adapt annotation models to handle these weaklylabeled data. Current techniques explore the annotators’ expertise and the task difficulty as variables that influences labels’ correction. Other specific aspects are also considered by noisy-labels analysis techniques. The main contribution of this thesis is the process to collect reliable crowdsourcing labels for a facial expressions dataset. This process consists in two steps: first, we design our crowdsourcing tasks to collect annotators labels; next, we infer the true label from the collected labels by applying state-of-art crowdsourcing algorithms. At the same time, a facial expression dataset is created, containing 40.000 images and respective labels. At the end, we publish the resulting dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reduction of greenhouse gas emissions is one of the big global challenges for the next decades due to its severe impact on the atmosphere that leads to a change in the climate and other environmental factors. One of the main sources of greenhouse gas is energy consumption, therefore a number of initiatives and calls for awareness and sustainability in energy use are issued among different types of institutional and organizations. The European Council adopted in 2007 energy and climate change objectives for 20% improvement until 2020. All European countries are required to use energy with more efficiency. Several steps could be conducted for energy reduction: understanding the buildings behavior through time, revealing the factors that influence the consumption, applying the right measurement for reduction and sustainability, visualizing the hidden connection between our daily habits impacts on the natural world and promoting to more sustainable life. Researchers have suggested that feedback visualization can effectively encourage conservation with energy reduction rate of 18%. Furthermore, researchers have contributed to the identification process of a set of factors which are very likely to influence consumption. Such as occupancy level, occupants behavior, environmental conditions, building thermal envelope, climate zones, etc. Nowadays, the amount of energy consumption at the university campuses are huge and it needs great effort to meet the reduction requested by European Council as well as the cost reduction. Thus, the present study was performed on the university buildings as a use case to: a. Investigate the most dynamic influence factors on energy consumption in campus; b. Implement prediction model for electricity consumption using different techniques, such as the traditional regression way and the alternative machine learning techniques; and c. Assist energy management by providing a real time energy feedback and visualization in campus for more awareness and better decision making. This methodology is implemented to the use case of University Jaume I (UJI), located in Castellon, Spain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Finance from the NOVA – School of Business and Economics and Maastricht University School of Business and Economics

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Search is now going beyond looking for factual information, and people wish to search for the opinions of others to help them in their own decision-making. Sentiment expressions or opinion expressions are used by users to express their opinion and embody important pieces of information, particularly in online commerce. The main problem that the present dissertation addresses is how to model text to find meaningful words that express a sentiment. In this context, I investigate the viability of automatically generating a sentiment lexicon for opinion retrieval and sentiment classification applications. For this research objective we propose to capture sentiment words that are derived from online users’ reviews. In this approach, we tackle a major challenge in sentiment analysis which is the detection of words that express subjective preference and domain-specific sentiment words such as jargon. To this aim we present a fully generative method that automatically learns a domain-specific lexicon and is fully independent of external sources. Sentiment lexicons can be applied in a broad set of applications, however popular recommendation algorithms have somehow been disconnected from sentiment analysis. Therefore, we present a study that explores the viability of applying sentiment analysis techniques to infer ratings in a recommendation algorithm. Furthermore, entities’ reputation is intrinsically associated with sentiment words that have a positive or negative relation with those entities. Hence, is provided a study that observes the viability of using a domain-specific lexicon to compute entities reputation. Finally, a recommendation system algorithm is improved with the use of sentiment-based ratings and entities reputation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigates peer to peer oral interaction in two task based language teaching classrooms, one of which was a self-declared cohesive group, and the other a self- declared less cohesive group, both at B1 level. It studies how learners talk cohesion into being and considers how this talk leads to learning opportunities in these groups. The study was classroom-based and was carried out over the period of an academic year. Research was conducted in the classrooms and the tasks were part of regular class work. The research was framed within a sociocognitive perspective of second language learning and data came from a number of sources, namely questionnaires, interviews and audio recorded talk of dyads, triads and groups of four students completing a total of eight oral tasks. These audio recordings were transcribed and analysed qualitatively for interactions which encouraged a positive social dimension and behaviours which led to learning opportunities, using conversation analysis. In addition, recordings were analysed quantitatively for learning opportunities and quantity and quality of language produced. Results show that learners in both classes exhibited multiple behaviours in interaction which could promote a positive social dimension, although behaviours which could discourage positive affect amongst group members were also found. Analysis of interactions also revealed the many ways in which learners in both the cohesive and less cohesive class created learning opportunities. Further qualitative analysis of these interactions showed that a number of factors including how learners approach a task, the decisions they make at zones of interactional transition and the affective relationship between participants influence the amount of learning opportunities created, as well as the quality and quantity of language produced. The main conclusion of the study is that it is not the cohesive nature of the group as a whole but the nature of the relationship between the individual members of the small group completing the task which influences the effectiveness of oral interaction for learning.This study contributes to our understanding of the way in which learners individualise the learning space and highlights the situated nature of language learning. It shows how individuals interact with each other and the task, and how talk in interaction changes moment-by-moment as learners react to the ‘here and now’ of the classroom environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Relatório de estágio de mestrado em Ensino de Informática

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The MAP-i Doctoral Program of the Universities of Minho, Aveiro and Porto

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching 90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as Nuclear Magnetic Resonance, Gas or Liquid Chromatography, Mass Spectrometry, Infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

These notes try to clarify some discussions on the formulation of individual intertemporal behavior under adaptive learning in representative agent models. First, we discuss two suggested approaches and related issues in the context of a simple consumption-saving model. Second, we show that the analysis of learning in the NewKeynesian monetary policy model based on “Euler equations” provides a consistent and valid approach.