1000 resultados para Invariant Line
Resumo:
Using mixed-methods, this research investigated why consumers engage in deviant behaviors. It found that there is significant variation in how consumers perceive right and wrong, which calls for more tailored deterrence strategies to challenge how consumers justify deviant behaviours. Specifically, individuals draw on a number of factors when assessing right and wrong. While individuals agree on the polar acceptable and unacceptable behaviours, behaviours in between are questionable. When social consensus varies on a behaviour's acceptability, so to do the predictors of deviant behaviour. These findings contribute to consumer deviance and consumer ethics research.
Resumo:
Practicum is widely recognised as an essential component of preservice professional teacher education. The effective supervision of preservice teachers while undertaking practicum is fundamental to the success of the field experience. However, many of the traditional models of supervision are under pressure. Alternative models for the supervision of preservice teacher practicum are needed to encourage stronger communication links between the university and field placement sites. This paper describes one such model, PracLink, an on-line communication infrastructure used to facilitate and support student learning during practicum. Research findings regarding the use of PracLink are reported, which highlight the strengths and potential of this model while also addressing its shortcomings.
Resumo:
Reality television, alongside shows such as Q&A – which may be Reality TV in all but name – frequently drives social media conversations about the Australian television industry. Big Brother, currently screening on Channel 9, is consistently among the shows with the highest levels of chatter in that regard. The precise Facebook data is hard to quantify but the Official Big Brother page boasts 805,400 likes and more than 59,000 comments since the start of the series, suggesting it has established a firm presence on that platform too...
Resumo:
In this paper we propose and study low complexity algorithms for on-line estimation of hidden Markov model (HMM) parameters. The estimates approach the true model parameters as the measurement noise approaches zero, but otherwise give improved estimates, albeit with bias. On a nite data set in the high noise case, the bias may not be signi cantly more severe than for a higher complexity asymptotically optimal scheme. Our algorithms require O(N3) calculations per time instant, where N is the number of states. Previous algorithms based on earlier hidden Markov model signal processing methods, including the expectation-maximumisation (EM) algorithm require O(N4) calculations per time instant.
Resumo:
A new online method is presented for estimation of the angular random walk and rate random walk coefficients of IMU (inertial measurement unit) gyros and accelerometers. The online method proposes a state space model and proposes parameter estimators for quantities previously measured from off-line data techniques such as the Allan variance graph. Allan variance graphs have large off-line computational effort and data storage requirements. The technique proposed here requires no data storage and computational effort of O(100) calculations per data sample.
Resumo:
To complement the existing treatment guidelines for all tumour types, ESMO organises consensus conferences to focus on specific issues in each type of tumour. The 2nd ESMO Consensus Conference on Lung Cancer was held on 11-12 May 2013 in Lugano. A total of 35 experts met to address several questions on non-small-cell lung cancer (NSCLC) in each of four areas: pathology and molecular biomarkers, first-line/second and further lines in advanced disease, early stage disease and locally-advanced disease. For each question, recommendations were made including reference to the grade of recommendation and level of evidence. This consensus paper focuses on 1st line / 2nd and further lines of treatment in advanced disease. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved.
Resumo:
In this paper we propose the hybrid use of illuminant invariant and RGB images to perform image classification of urban scenes despite challenging variation in lighting conditions. Coping with lighting change (and the shadows thereby invoked) is a non-negotiable requirement for long term autonomy using vision. One aspect of this is the ability to reliably classify scene components in the presence of marked and often sudden changes in lighting. This is the focus of this paper. Posed with the task of classifying all parts in a scene from a full colour image, we propose that lighting invariant transforms can reduce the variability of the scene, resulting in a more reliable classification. We leverage the ideas of “data transfer” for classification, beginning with full colour images for obtaining candidate scene-level matches using global image descriptors. This is commonly followed by superpixellevel matching with local features. However, we show that if the RGB images are subjected to an illuminant invariant transform before computing the superpixel-level features, classification is significantly more robust to scene illumination effects. The approach is evaluated using three datasets. The first being our own dataset and the second being the KITTI dataset using manually generated ground truth for quantitative analysis. We qualitatively evaluate the method on a third custom dataset over a 750m trajectory.
Resumo:
Vision-based place recognition involves recognising familiar places despite changes in environmental conditions or camera viewpoint (pose). Existing training-free methods exhibit excellent invariance to either of these challenges, but not both simultaneously. In this paper, we present a technique for condition-invariant place recognition across large lateral platform pose variance for vehicles or robots travelling along routes. Our approach combines sideways facing cameras with a new multi-scale image comparison technique that generates synthetic views for input into the condition-invariant Sequence Matching Across Route Traversals (SMART) algorithm. We evaluate the system’s performance on multi-lane roads in two different environments across day-night cycles. In the extreme case of day-night place recognition across the entire width of a four-lane-plus-median-strip highway, we demonstrate performance of up to 44% recall at 100% precision, where current state-of-the-art fails.
Resumo:
This paper presents an online, unsupervised training algorithm enabling vision-based place recognition across a wide range of changing environmental conditions such as those caused by weather, seasons, and day-night cycles. The technique applies principal component analysis to distinguish between aspects of a location’s appearance that are condition-dependent and those that are condition-invariant. Removing the dimensions associated with environmental conditions produces condition-invariant images that can be used by appearance-based place recognition methods. This approach has a unique benefit – it requires training images from only one type of environmental condition, unlike existing data-driven methods that require training images with labelled frame correspondences from two or more environmental conditions. The method is applied to two benchmark variable condition datasets. Performance is equivalent or superior to the current state of the art despite the lesser training requirements, and is demonstrated to generalise to previously unseen locations.
Resumo:
Nowadays, integration of small-scale electricity generators, known as Distributed Generation (DG), into distribution networks has become increasingly popular. This tendency together with the falling price of DG units has a great potential in giving the DG a better chance to participate in voltage regulation process, in parallel with other regulating devices already available in the distribution systems. The voltage control issue turns out to be a very challenging problem for distribution engineers, since existing control coordination schemes need to be reconsidered to take into account the DG operation. In this paper, a control coordination approach is proposed, which is able to utilize the ability of the DG as a voltage regulator, and at the same time minimize the interaction of DG with another DG or other active devices, such as On-load Tap Changing Transformer (OLTC). The proposed technique has been developed based on the concepts of protection principles (magnitude grading and time grading) for response coordination of DG and other regulating devices and uses Advanced Line Drop Compensators (ALDCs) for implementation. A distribution feeder with tap changing transformer and DG units has been extracted from a practical system to test the proposed control technique. The results show that the proposed method provides an effective solution for coordination of DG with another DG or voltage regulating devices and the integration of protection principles has considerably reduced the control interaction to achieve the desired voltage correction.
Resumo:
As cities are rapidly developing new interventions against climate change, embedding renewable energy in public spaces is an important strategy. However, most interventions primarily include environmental sustainability while neglecting the social and economic interrelationships of electricity production. Although there is a growing interest in sustainability within environmental design and landscape architecture, public spaces are still awaiting viable energy-conscious design and assessment interventions. The purpose of this paper is to investigate this issue in a renowned public space—Ballast Point Park in Sydney—using a triple bottom line (TBL) case study approach. The emerging factors and relationships of each component of TBL, within the context of public open space, are identified and discussed. With specific focus on renewable energy distribution in and around Ballast Point Park, the paper concludes with a general design framework, which conceptualizes an optimal distribution of onsite electricity produced from renewable sources embedded in public open spaces.
Resumo:
Vicki Mayer’s book is unusual in that, despite its title, it is not about television producers at all, or at least not in the sense that scholars and the television industry itself have traditionally understood the role. Rather than referring to those in creative, managerial or financial control, or those with substantial intellectual input into a program, Mayer uses the term in a deliberately broad sense to mean, essentially, anyone ‘whose labor, however small, contributes to [television] production’ (179).