845 resultados para Hydrogen absorption


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of the adverse effect of CO2 from fossil fuel combustion on the earth's ecosystems, the most cost-effective method for CO2 capture is an important area of research. The predominant process for CO2 capture currently employed by industry is chemical absorption in amine solutions. A dynamic model for the de-absorption process was developed with monoethanolamine (MEA) solution. Henry's law was used for modelling the vapour phase equilibrium of the CO2, and fugacity ratios calculated by the Peng-Robinson equation of state (EOS) were used for H2O, MEA, N-2 and O-2. Chemical reactions between CO2 and MEA were included in the model along with the enhancement factor for chemical absorption. Liquid and vapour energy balances were developed to calculate the liquid and vapour temperature, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large area colour imager optically addressed is presented. The colour imager consists of a thin wide band gap p-i-n a-SiC:H filtering element deposited on the top of a thick large area a-SiC:H(-p)/a-Si:H(-i)/a-SiC:H(-n) image sensor, which reveals itself an intrinsic colour filter. In order to tune the external applied voltage for full colour discrimination the photocurrent generated by a modulated red light is measured under different optical and electrical bias. Results reveal that the integrated device behaves itself as an imager and a filter giving information not only on the position where the optical image is absorbed but also on it wavelength and intensity. The amplitude and sign of the image signals are electrically tuneable. In a wide range of incident fluxes and under reverse bias, the red and blue image signals are opposite in sign and the green signal is suppressed allowing blue and red colour recognition. The green information is obtained under forward bias, where the blue signal goes down to zero and the red and green remain constant. Combining the information obtained at this two applied voltages a RGB colour image picture can be acquired without the need of the usual colour filters or pixel architecture. A numerical simulation supports the colour filter analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose - To study the influence of protein structure on the immunogenicity in wildtype and immune tolerant mice of well-characterized degradation products of recombinant human interferon alpha2b (rhIFNα2b). Methods - RhIFNα2b was degraded by metal catalyzed oxidation (M), crosslinking with glutaraldehyde (G), oxidation with hydrogen peroxide (H) and incubation in a boiling water bath (B). The products were characterized with UV absorption, circular dichroism and fluorescence spectroscopy, gel permeation chromatography, reversed-phase HPLC, SDS-PAGE, Western blotting and mass spectrometry. The immunogenicity of the products was evaluated in wildtype mice and in transgenic mice immune tolerant for hIFNα2. Serum antibodies were detected by ELISA or surface plasmon resonance. Results - M-rhIFNα2b contained covalently aggregated rhIFNα2b with three methionines partly oxidized to methionine sulfoxides. G-rhIFNα2b contained covalent aggregates and did not show changes in secondary structure. H-rhIFNα2b was only chemically changed with four partly oxidized methionines. B-rhIFNα2b was largely unfolded and heavily aggregated. Native (N) rhIFNα2b was immunogenic in the wildtype mice but not in the transgenic mice, showing that the latter were immune tolerant for rhIFNα2b. The antirhIFNα2b antibody levels in the wildtype mice depended on the degradation product: M-rhIFNα2b > H-rhIFNα2b ~ N-rhIFNα2b >> B-rhIFNα2b; G-rhIFNα2b did not induce anti-rhIFNα2b antibodies. In the transgenic mice, only M-rhIFNα2b could break the immune tolerance. Conclusions - RhIFNα2b immunogenicity is related to its structural integrity. Moreover, the immunogenicity of aggregated rhIFNα2b depends on the structure and orientation of the constituent protein molecules and/or on the aggregate size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: This study was conducted to study the influence of protein structure on the immunogenicity in wild-type and immune tolerant mice of well-characterized degradation products of recombinant human interferon alpha2b (rhIFNα2b). Methods: RhIFNα2b was degraded by metal-catalyzed oxidation (M), cross-linking with glutaraldehyde (G), oxidation with hydrogen peroxide (H), and incubation in a boiling water bath (B). The products were characterized with UV absorption, circular dichroism and fluorescence spectroscopy, gel permeation chromatography, reverse-phase high-pressure liquid chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis, Western blotting, and mass spectrometry. The immunogenicity of the products was evaluated in wild-type mice and in transgenic mice immune tolerant for hIFNα2. Serum antibodies were detected by enzyme-linked immunosorbent assay or surface plasmon resonance. Results: M-rhIFNα2b contained covalently aggregated rhIFNα2b with three methionines partly oxidized to methionine sulfoxides. G-rhIFNα2b contained covalent aggregates and did not show changes in secondary structure. H-rhIFNα2b was only chemically changed with four partly oxidized methionines. B-rhIFNα2b was largely unfolded and heavily aggregated. Nontreated (N) rhIFNα2b was immunogenic in the wild-type mice but not in the transgenic mice, showing that the latter were immune tolerant for rhIFNα2b. The anti-rhIFNα2b antibody levels in the wild-type mice depended on the degradation product: M-rhIFNα2b > H-rhIFNα2b ∼ N-rhIFNα2b ≫ B-rhIFNα2b; G-rhIFNα2b did not induce anti-rhIFNα2b antibodies. In the transgenic mice, only M-rhIFNα2b could break the immune tolerance. Conclusions: RhIFNα2b immunogenicity is related to its structural integrity. Moreover, the immunogenicity of aggregated rhIFNα2b depends on the structure and orientation of the constituent protein molecules and/or on the aggregate size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydrotris(pyrazol-1-yl)methane iron(II) complex [FeCl2{eta(3)-HC(pz)(3)}] (Fe, pz = pyrazol-1-yl) immobilized on commercial (MOR) or desilicated (MOR-D) zeolite, catalyses the oxidation of cyclohexane with hydrogen peroxide to cyclohexanol and cyclohexanone, under mild conditions. MOR-D/Fe (desilicated zeolite supported [FeCl2{eta(3)-HC(pz)(3)}] complex) provides an outstanding catalytic activity (TON up to 2.90 x 10(3)) with the concomitant overall yield of 38%, and can be easy recovered and reused. The MOR or MOR-D supported hydrotris(pyrazol-1-yl)methane iron(II) complex (MOR/Fe and MOR-D/Fe, respectively) was characterized by X-ray powder diffraction, ICP-AES, and TEM studies as well as by IR spectroscopy and N-2 adsorption at -196 degrees C. The catalytic operational conditions (e.g., reaction time, type and amount of oxidant, presence of acid and type of solvent) were optimized. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pregnancy is a dynamic state and the placenta is a temporary organ that, among other important functions, plays a crucial role in the transport of nutrients and metabolites between the mother and the fetus, which is essential for a successful pregnancy. Among these nutrients, glucose is considered a primary source of energy and, therefore, fundamental to insure proper fetus development. Several studies have shown that glucose uptake is dependent on several morphological and biochemical placental conditions. Oxidative stress results from the unbalance between reactive oxygen species (ROS) and antioxidants, in favor of the first. During pregnancy, ROS, and therefore oxidative stress, increase, due to increased tissue oxygenation. Moreover, the relation between ROS and some pathological conditions during pregnancy has been well established. For these reasons, it becomes essential to understand if oxidative stress can compromise the uptake of glucose by the placenta. To make this study possible, a trophoblastic cell line, the BeWo cell line, was used. Experiments regarding glucose uptake, either under normal or oxidative stress conditions, were conducted using tert-butylhydroperoxide (tBOOH) as an oxidative stress inducer, and 3H-2-deoxy-D-glucose (3H-DG) as a glucose analogue. Afterwards, studies regarding the involvement of glucose facilitative transporters (GLUT) and the phosphatidylinositol 3-kinases (PI3K) and protein kinase C (PKC) pathways were conducted, also under normal and oxidative stress conditions. A few antioxidants, endogenous and from diet, were also tested in order to study their possible reversible effect of the oxidative effect of tBOOH upon apical 3H-DG uptake. Finally, transepithelial studies gave interesting insights regarding the apical-to-basolateral transport of 3H-DG. Results showed that 3H-DG uptake, in BeWo cells, is roughly 50% GLUT-mediated and that tBOOH (100 μM; 24h) decreases apical 3H-DG uptake in BeWo cells by about 33%, by reducing both GLUT- (by 28%) and non-GLUT-mediated (by 40%) 3H-DG uptake. Uptake of 3H-DG and the effect of tBOOH upon 3H-DG uptake are not dependent on PKC and PI3K. Moreover, the effect of tBOOH is not associated with a reduction in GLUT1 mRNA levels. Resveratrol, quercetin and epigallocatechin-3-gallate, at 50 μM, reversed, by at least 45%, the effect of tBOOH upon 3H-DG uptake. Transwell studies show that the apical-to-basolateral transepithelial transport of 3H-DG is increased by tBOOH.In conclusion, our results show that tBOOH caused a marked decrease in both GLUT and non-GLUT-mediated apical uptake of 3H-DG by BeWo cells. Given the association of increased oxidative stress levels with several important pregnancy pathologies, and the important role of glucose for fetal development, the results of this study appear very interesting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gold(III) complexes of type [AuCl2{eta(2)-RC(R'pz)(3)}]Cl [R = R' = H (1), R = CH2OH, R' = H (2) and R = H, R' = 3,5-Me-2(3), pz = pyrazol-1-yl] were supported on carbon materials (activated carbon, carbon xerogel and carbon nanotubes) and used for the oxidation of cyclohexane to cyclohexanol and cyclohexanone, with aqueous H2O2, under mild conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports on the optoelectronic properties and device application of hydrogenated amorphous silicon carbide (a-Si(1-x)C(x):H) films grown by plasma-enhanced chemical vapour deposition (PECVD). The films with an optical bandgap ranging from about 1.8 to 2.0 eV were deposited in hydrogen diluted silane-methane plasma by varying the radio frequency power. Several n-i-p structures with an intrinsic a-Si(1-x)C(x):H layer of different optical gaps were also fabricated. The optimized devices exhibited a diode ideality factor of 1.4-1.8, and a leakage current of 190-470 pA/cm(2) at -5 V. The density of deep defect states in a-Si(1-x)C(x):H was estimated from the transient dark current measurements and correlated with the optical bandgap and carbon content. Urbach energies for the valence band tail were also determined by analyzing the spectral response within sub-bandgap energy range. (C) 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm-nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and, (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M-1s−1 and ≥ 1.3 × 103 M-1s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The construction industry keeps on demanding huge quantities of natural resources, mainly minerals for mortars and concrete production. The depletion of many quarries and environmental concerns about reducing the dumping of construction and demolition waste in quarries have led to an increase in the procuring and use of recycled aggregates from this type of waste. If they are to be incorporated in concrete and mortars it is essential to know their properties to guarantee the adequate performance of the end products, in both mechanical and durability-related terms. Existing regulated tests were developed for natural aggregates, however, and several problems arise when they are applied to recycled aggregates, especially fine recycled aggregates (FRA). This paper describes the main problems encountered with these tests and proposes an alternative method to determine the density and water absorption of FRA that removes them. The use of sodium hexametaphosphate solutions in the water absorption test has proven to improve its efficiency, minimizing cohesion between particles and helping to release entrained air.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica based nanostructured composite materials doped with luminol and cobalt(II) ion were synthesized and characterized, resulting in a highly chemiluminescent material in the presence of hydrogen peroxide. A detection system with the CL light guided from the reaction tube to the photomultiplier tube using a one millimeter glass optical fiber was developed and assessed. A linear response was observed using a semi-logarithm calibration between 50–2000 µM hydrogen peroxide with 1 µM as the limit of detection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enzyme hydrogenase isolated from the sulphate reducing anaerobic bacterium Desulfovibrio gigas was encapsulated in reverse micelles of AOT–water–isooctane. The enzyme ability to consume molecular hydrogen was studied as a function of the micelle size (given by Wo = [H2O]/[organic solvent]). A peak of catalytic activity was obtained for Wo = 18, a micelle size theoretically fitting the heterodimeric hydrogenase molecule. At this Wo value, the recorded catalytic activity was slightly higher than in a buffer system(Kcat = 169.43 s−1 against the buffer value of 151 s−1). The optimal buffer used to encapsulate the enzyme was found to be imidazole 50 mM, pH 9.0. The molecular hydrogen production activity was also tested in this reverse micelle medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[CoCl(-Cl)(Hpz(Ph))(3)](2) (1) and [CoCl2(Hpz(Ph))(4)] (2) were obtained by reaction of CoCl2 with HC(pz(Ph))(3) and Hpz(Ph), respectively (Hpz(Ph)=3-phenylpyrazole). The compounds were isolated as air-stable solids and fully characterized by IR and far-IR spectroscopy, MS(ESI+/-), elemental analysis, cyclic voltammetry (CV), controlled potential electrolysis, and single-crystal X-ray diffraction. Electrochemical studies showed that 1 and 2 undergo single-electron irreversible (CoCoIII)-Co-II oxidations and (CoCoI)-Co-II reductions at potentials measured by CV, which also allowed, in the case of dinuclear complex 1, the detection of electronic communication between the Co centers through the chloride bridging ligands. The electrochemical behavior of models of 1 and 2 were also investigated by density functional theory (DFT) methods, which indicated that the vertical oxidation of 1 and 2 (that before structural relaxation) affects mostly the chloride and pyrazolyl ligands, whereas adiabatic oxidation (that after the geometry relaxation) and reduction are mostly metal centered. Compounds 1 and 2 and, for comparative purposes, other related scorpionate and pyrazole cobalt complexes, exhibit catalytic activity for the peroxidative oxidation of cyclohexane to cyclohexanol and cyclohexanone under mild conditions (room temperature, aqueous H2O2). Insitu X-ray absorption spectroscopy studies indicated that the species derived from complexes 1 and 2 during the oxidation of cyclohexane (i.e., Ox-1 and Ox-2, respectively) are analogous and contain a Co-III site. Complex 2 showed low invitro cytotoxicity toward the HCT116 colorectal carcinoma and MCF7 breast adenocarcinoma cell lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mineral content (phosphorous (P), potassium (K), sodium (Na), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn) and copper (Cu)) of eight ready-to-eat baby leaf vegetables was determined. The samples were subjected to microwave-assisted digestion and the minerals were quantified by High-Resolution Continuum Source Atomic Absorption Spectrometry (HR-CS-AAS) with flame and electrothermal atomisation. The methods were optimised and validated producing low LOQs, good repeatability and linearity, and recoveries, ranging from 91% to 110% for the minerals analysed. Phosphorous was determined by a standard colorimetric method. The accuracy of the method was checked by analysing a certified reference material; results were in agreement with the quantified value. The samples had a high content of potassium and calcium, but the principal mineral was iron. The mineral content was stable during storage and baby leaf vegetables could represent a good source of minerals in a balanced diet. A linear discriminant analysis was performed to compare the mineral profile obtained and showed, as expected, that the mineral content was similar between samples from the same family. The Linear Discriminant Analysis was able to discriminate different samples based on their mineral profile.