854 resultados para Fractional integration
Resumo:
This contribution introduces the fractional calculus (FC) fundamental mathematical aspects and discuses some of their consequences. Based on the FC concepts, the chapter reviews the main approaches for implementing fractional operators and discusses the adoption of FC in control systems. Finally are presented some applications in the areas of modeling and control, namely fractional PID, heat diffusion systems, electromagnetism, fractional electrical impedances, evolutionary algorithms, robotics, and nonlinear system control.
Resumo:
The process of resources systems selection takes an important part in Distributed/Agile/Virtual Enterprises (D/A/V Es) integration. However, the resources systems selection is still a difficult matter to solve in a D/A/VE, as it is pointed out in this paper. Globally, we can say that the selection problem has been equated from different aspects, originating different kinds of models/algorithms to solve it. In order to assist the development of a web prototype tool (broker tool), intelligent and flexible, that integrates all the selection model activities and tools, and with the capacity to adequate to each D/A/V E project or instance (this is the major goal of our final project), we intend in this paper to show: a formulation of a kind of resources selection problem and the limitations of the algorithms proposed to solve it. We formulate a particular case of the problem as an integer programming, which is solved using simplex and branch and bound algorithms, and identify their performance limitations (in terms of processing time) based on simulation results. These limitations depend on the number of processing tasks and on the number of pre-selected resources per processing tasks, defining the domain of applicability of the algorithms for the problem studied. The limitations detected open the necessity of the application of other kind of algorithms (approximate solution algorithms) outside the domain of applicability founded for the algorithms simulated. However, for a broker tool it is very important the knowledge of algorithms limitations, in order to, based on problem features, develop and select the most suitable algorithm that guarantees a good performance.
Resumo:
The synthesis and application of fractional-order controllers is now an active research field. This article investigates the use of fractional-order PID controllers in the velocity control of an experimental modular servo system. The systern consists of a digital servomechanism and open-architecture software environment for real-time control experiments using MATLAB/Simulink. Different tuning methods will be employed, such as heuristics based on the well-known Ziegler Nichols rules, techniques based on Bode’s ideal transfer function and optimization tuning methods. Experimental responses obtained from the application of the several fractional-order controllers are presented and analyzed. The effectiveness and superior performance of the proposed algorithms are also compared with classical integer-order PID controllers.
Resumo:
Fractional calculus (FC) is being used in several distinct areas of science and engineering, being recognized its ability to yield a superior modelling and control in many dynamical systems. This article illustrates the application of FC in the area of robot control. A Fractional Order PDμ controller is proposed for the control of an hexapod robot with 3 dof legs. It is demonstrated the superior performance of the system by using the FC concepts.
Resumo:
This paper proposes a Genetic Algorithm (GA) for the design of combinational logic circuits. The fitness function evaluation is calculated using Fractional Calculus. This approach extends the classical fitness function by including a fractional-order dynamical evaluation. The experiments reveal superior results when comparing with the classical method.
Resumo:
The Maxwell equations, expressing the fundamental laws of electricity and magnetism, only involve the integer-order calculus. However, several effects present in electromagnetism, motivated recently an analysis under the fractional calculus (FC) perspective. In fact, this mathematical concept allows a deeper insight into many phenomena that classical models overlook. On the other hand, genetic algorithms (GA) are an important tool to solve optimization problems that occur in engineering. In this work we use FC and GA to implement the electrical potential of fractional order. The performance of the GA scheme and the convergence of the resulting approximations are analyzed.
Resumo:
The concepts involved with fractional calculus (FC) theory are applied in almost all areas of science and engineering. Its ability to yield superior modeling and control in many dynamical systems is well recognized. In this article, we will introduce the fundamental aspects associated with the application of FC to the control of dynamic systems.
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades. It has been recognized the advantageous use of this mathematical tool in the modelling and control of many dynamical systems. Having these ideas in mind, this paper discusses a FC perspective in the study of the dynamics and control of several systems. The paper investigates the use of FC in the fields of controller tuning, legged robots, electrical systems and digital circuit synthesis.
Resumo:
This article presents a dynamical analysis of several traffic phenomena, applying a new modelling formalism based on the embedding of statistics and Laplace transform. The new dynamic description integrates the concepts of fractional calculus leading to a more natural treatment of the continuum of the Transfer Function parameters intrinsic in this system. The results using system theory tools point out that it is possible to study traffic systems, taking advantage of the knowledge gathered with automatic control algorithms. Dynamics, Games and Science I Dynamics, Games and Science I Look Inside Other actions Export citation About this Book Reprints and Permissions Add to Papers Share Share this content on Facebook Share this content on Twitter Share this content on LinkedIn
Resumo:
This paper studies the application of fractional algorithms in the control of a quad-rotor rotorcraft. The development of a flight simulator provide the evaluation of the controller algorithm. Several basic maneuvers are investigated, namely the elevation and the position control.
Resumo:
Fractional calculus (FC) is currently being applied in many areas of science and technology. In fact, this mathematical concept helps the researches to have a deeper insight about several phenomena that integer order models overlook. Genetic algorithms (GA) are an important tool to solve optimization problems that occur in engineering. This methodology applies the concepts that describe biological evolution to obtain optimal solution in many different applications. In this line of thought, in this work we use the FC and the GA concepts to implement the electrical fractional order potential. The performance of the GA scheme, and the convergence of the resulting approximation, are analyzed. The results are analyzed for different number of charges and several fractional orders.
Resumo:
Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades due to the progress in the area of nonlinear dynamics. This article discusses several applications of fractional calculus in science and engineering, namely: the control of heat systems, the tuning of PID controllers based on fractional calculus concepts and the dynamics in hexapod locomotion.
Resumo:
Though the formal mathematical idea of introducing noninteger order derivatives can be traced from the 17th century in a letter by L’Hospital in which he asked Leibniz what the meaning of D n y if n = 1/2 would be in 1695 [1], it was better outlined only in the 19th century [2, 3, 4]. Due to the lack of clear physical interpretation their first applications in physics appeared only later, in the 20th century, in connection with visco-elastic phenomena [5, 6]. The topic later obtained quite general attention [7, 8, 9], and also found new applications in material science [10], analysis of earth-quake signals [11], control of robots [12], and in the description of diffusion [13], etc.
Resumo:
Most definitions of virtual enterprise (VE) incorporate the idea of extended and collaborative outsourcing to suppliers and subcontractors in order to achieve a competitive response to market demands (Webster, Sugden, & Tayles, 2004). As suggested by several authors (Browne & Zhang, 1999; Byrne, 1993; Camarinha-Matos & Afsarmanesh, 1999; Cunha, Putnik, & Ávila, 2000; Davidow & Malone, 1992; Preiss, Goldman, & Nagel, 1996), a VE consists of a network of independent enterprises (resources providers) with reconfiguration capability in useful time, permanently aligned with the market requirements, created to take profit from a specific market opportunity, and where each participant contributes with its best practices and core competencies to the success and competitiveness of the structure as a whole. Even during the operation phase of the VE, the configuration can change, to assure business alignment with the market demands, traduced by the identification of reconfiguration opportunities and continuous readjustment or reconfiguration of the VE network, to meet unexpected situations or to keep permanent competitiveness and maximum performance (Cunha & Putnik, 2002, 2005a, 2005b).
Resumo:
This study addresses the optimization of fractional algorithms for the discrete-time control of linear and non-linear systems. The paper starts by analyzing the fundamentals of fractional control systems and genetic algorithms. In a second phase the paper evaluates the problem in an optimization perspective. The results demonstrate the feasibility of the evolutionary strategy and the adaptability to distinct types of systems.