861 resultados para Forms (Mathematics)
Resumo:
Research has consistently found that school students who do not identify as self-declared completely heterosexual are at increased risk of victimization by bullying from peers. This study examined heterosexual and nonheterosexual university students’ involvement in both traditional and cyber forms of bullying, as either bullies or victims. Five hundred twenty-eight first-year university students (M= 19.52 years old) were surveyed about their sexual orientation and their bullying experiences over the previous 12 months. The results showed that nonheterosexual young people reported higher levels of involvement in traditional bullying, both as victims and perpetrators, in comparison to heterosexual students. In contrast, cyberbullying trends were generally found to be similar for heterosexual and nonheterosexual young people. Gender differences were also found. The implications of these results are discussed in terms of intervention and prevention of the victimization of nonheterosexual university students.
Resumo:
The use of symbols and abbreviations adds uniqueness and complexity to the mathematical language register. In this article, the reader’s attention is drawn to the multitude of symbols and abbreviations which are used in mathematics. The conventions which underpin the use of the symbols and abbreviations and the linguistic difficulties which learners of mathematics may encounter due to the inclusion of the symbolic language are discussed. 2010 NAPLAN numeracy tests are used to illustrate examples of the complexities of the symbolic language of mathematics.
Resumo:
Graphical tasks have become a prominent aspect of mathematics assessment. From a conceptual stance, the purpose of this study was to better understand the composition of graphical tasks commonly used to assess students’ mathematics understandings. Through an iterative design, the investigation described the sense making of 11–12-year-olds as they decoded mathematics tasks which contained a graphic. An ongoing analysis of two phases of data collection was undertaken as we analysed the extent to which various elements of text, graphics, and symbols influenced student sense making. Specifically, the study outlined the changed behaviour (and performance) of the participants as they solved graphical tasks that had been modified with respect to these elements. We propose a theoretical framework for understanding the composition of a graphical task and identify three specific elements which are dependently and independently related to each other, namely: the graphic; the text; and the symbols. Results indicated that although changes to the graphical tasks were minimal, a change in student success and understanding was most evident when the graphic element was modified. Implications include the need for test designers to carefully consider the graphics embedded within mathematics tasks since the elements within graphical tasks greatly influence student understanding.
Resumo:
In Australia we are at a crossroad in science education. We have come from a long history of adopting international curricula, through to blending international and Australian developed materials, to the present which is a thoroughly unique Australian curriculum in science. This paper documents Australia’s journey over the past 200 years, as we prepare for the unveiling of our first truly Australian National Curriculum. One of the unique aspects of this curriculum is the emphasis on practical work and inquiry-based learning. This paper identifies seven forms of practical work currently used in Australian schools and the purposes aligned with each form by 138 pre-service and experienced in-service teachers. The paper explores the question “What does the impending national curriculum, with its emphasis on practical inquiry mean to the teachers now, are they ready?” The study suggests that practical work in Australian schools is multifaceted, and the teacher aligned purposes are dependent not only upon the age of the student, but also on the type of practical work being undertaken. It was found that most teachers are not ready to teach using inquiry-based pedagogy and cite lack of content knowledge, behaviour management, and lack of physical resources and availability of classroom space as key issues which will hinder their implementation of the inquiry component of Australia’s pending curriculum in science.
Resumo:
This study examines the pedagogical contributions made by teacher aides in underperforming Indigenous mathematics secondary classrooms. Three teaching teams, each consisting of a teacher and their teacher aide, responded to semi-structured interviews. Their mathematics classrooms were observed for details of pedagogical contributions to the mathematics lessons. It was found that the pedagogical contributions of the teacher aides varied from co-teaching contributions, to the provision of menial support and behaviour management. The techniques used by the teacher aides to provide student feedback, to support behaviour management and to undertake questioning vary greatly, and this variance is also evident in the classroom atmosphere. Teacher aides are providing pedagogical contributions, and are engaged in instructional interactions, and are in a sense “teaching”.
Resumo:
Large-scale international comparative studies and cross-ethnic studies have revealed that Chinese students, whether living in China or overseas, consistently outperform their counterparts in mathematics achievement. These studies tended to explain this result from psychological, educational, or cultural perspectives. However, there is scant sociological investigation addressing Chinese students’ better mathematics achievement. Drawing on Bourdieu’s sociological theory, this study conceptualises Chinese Australians’ “Chineseness” by the notion of ‘habitus’ and considers this “Chineseness” generating but not determinating mechanism that underpins Chinese Australians’ mathematics learning. Two hundred and thirty complete responses from Chinese Australian participants were collected by an online questionnaire. Simple regression model statistically significantly well predicted mathematics achievement by “Chineseness” (F = 141.90, R = .62, t = 11.91, p < .001). Taking account of “Chineseness” as a sociological mechanism for Chinese Australians’ mathematics learning, this study complements psychological and educational impacts on better mathematics achievement of Chinese students revealed by previous studies. This study also challenges the cultural superiority discourse that attributes better mathematics achievement of Chinese students to cultural factors.
Resumo:
ICT (Information and Communication Technology) creates numerous opportunities for teachers to re-think their pedagogies. In subjects like mathematics which draws upon abstract concepts, ICT creates such an opportunity. Instead of a mimetic pedagogical approach, suitably designed activities with ICT can enable learners to engage more proactively with their learning. In this quasi-experimental designed study, ICT was used in teaching mathematics to a group of first year high school students (N=25) in Australia. The control group was taught predominantly through traditional pedagogies (N=22). Most of the variables that had previously impacted on the design of such studies were suitably controlled in this yearlong investigation. Quantitative and qualitative results showed that students who were taught by ICT driven pedagogies benefitted from the experience. Pre and post-test means showed that there was a difference between the treatment and control groups. Of greater significance was that the students (in the treatment group) believed that the technology enabled them to engage more with their learning.
Resumo:
According to Karl Popper, widely regarded as one of the greatest philosophers of science in the 20th century, falsifiability is the primary characteristic that distinguishes scientific theories from ideologies – or dogma. For example, for people who argue that schools should treat creationism as a scientific theory, comparable to modern theories of evolution, advocates of creationism would need to become engaged in the generation of falsifiable hypothesis, and would need to abandon the practice of discouraging questioning and inquiry. Ironically, scientific theories themselves are accepted or rejected based on a principle that might be called survival of the fittest. So, for healthy theories on development to occur, four Darwinian functions should function: (a) variation – avoid orthodoxy and encourage divergent thinking, (b) selection – submit all assumptions and innovations to rigorous testing, (c) diffusion – encourage the shareability of new and/or viable ways of thinking, and (d) accumulation – encourage the reuseability of viable aspects of productive innovations.
Resumo:
A critical step in the dissemination of ovarian cancer is the formation of multicellular spheroids from cells shed from the primary tumour. The objectives of this study were to apply bioengineered three-dimensional (3D) microenvironments for culturing ovarian cancer spheroids in vitro and simultaneously to build on a mathematical model describing the growth of multicellular spheroids in these biomimetic matrices. Cancer cells derived from human epithelial ovarian carcinoma were embedded within biomimetic hydrogels of varying stiffness and grown for up to 4 weeks. Immunohistochemistry, imaging and growth analyses were used to quantify the dependence of cell proliferation and apoptosis on matrix stiffness, long-term culture and treatment with the anti-cancer drug paclitaxel. The mathematical model was formulated as a free boundary problem in which each spheroid was treated as an incompressible porous medium. The functional forms used to describe the rates of cell proliferation and apoptosis were motivated by the experimental work and predictions of the mathematical model compared with the experimental output. This work aimed to establish whether it is possible to simulate solid tumour growth on the basis of data on spheroid size, cell proliferation and cell death within these spheroids. The mathematical model predictions were in agreement with the experimental data set and simulated how the growth of cancer spheroids was influenced by mechanical and biochemical stimuli including matrix stiffness, culture duration and administration of a chemotherapeutic drug. Our computational model provides new perspectives on experimental results and has informed the design of new 3D studies of chemoresistance of multicellular cancer spheroids.
Resumo:
This article argues for an interdisciplinary approach to mathematical problem solving at the elementary school, one that draws upon the engineering domain. A modeling approach, using engineering model eliciting activities, might provide a rich source of meaningful situations that capitalize on and extend students’ existing mathematical learning. The study reports on the developments of 48 twelve-year old students who worked on the Bridge Design activity. Results revealed that young students, even before formal instruction, have the capacity to deal with complex interdisciplinary problems. A number of students created quite appropriate models by developing the necessary mathematical constructs to solve the problem. Students’ difficulties in mathematizing the problem, and in revising and documenting their models are presented and analysed, followed by a discussion on the appropriateness of a modeling approach as a means for introducing complex problems to elementary school students.
Resumo:
In the field of face recognition, Sparse Representation (SR) has received considerable attention during the past few years. Most of the relevant literature focuses on holistic descriptors in closed-set identification applications. The underlying assumption in SR-based methods is that each class in the gallery has sufficient samples and the query lies on the subspace spanned by the gallery of the same class. Unfortunately, such assumption is easily violated in the more challenging face verification scenario, where an algorithm is required to determine if two faces (where one or both have not been seen before) belong to the same person. In this paper, we first discuss why previous attempts with SR might not be applicable to verification problems. We then propose an alternative approach to face verification via SR. Specifically, we propose to use explicit SR encoding on local image patches rather than the entire face. The obtained sparse signals are pooled via averaging to form multiple region descriptors, which are then concatenated to form an overall face descriptor. Due to the deliberate loss spatial relations within each region (caused by averaging), the resulting descriptor is robust to misalignment & various image deformations. Within the proposed framework, we evaluate several SR encoding techniques: l1-minimisation, Sparse Autoencoder Neural Network (SANN), and an implicit probabilistic technique based on Gaussian Mixture Models. Thorough experiments on AR, FERET, exYaleB, BANCA and ChokePoint datasets show that the proposed local SR approach obtains considerably better and more robust performance than several previous state-of-the-art holistic SR methods, in both verification and closed-set identification problems. The experiments also show that l1-minimisation based encoding has a considerably higher computational than the other techniques, but leads to higher recognition rates.
Resumo:
In the 21st century mathematics proficiency is synonymous with a numerate citizenry. In the past few decades young children’s ability to reason mathematically and develop mathematical proficiencies has been recognised. This paper explores the history of early childhood mathematics (ECME) that may explicate differences in Chinese and Australian contexts. Results of this review established that China and Australia are diametrically positioned in ECME. Influencing each countries philosophies and practices are their cultural beliefs. ECME in China and Australia must be culturally sustainable to achieve excellent outcomes for young children. Ongoing critique and review is necessary to ensure that ECME is meeting the needs of all teachers and children in their particular context. China and Australia with their rich contrasting philosophies can assist each other in their journeys to create exemplary ECME for the 21st century.
Resumo:
Most teachers recognise the importance of mathematics teaching and learning in early years but there is not consensus on how and when this learning should occur. Young-Loveridge (cited in de Vries, Thomas, and Warren, 2010) suggests that quality early mathematical experiences are a key determinant to later achievement.
Resumo:
Standard differential equation–based models of collective cell behaviour, such as the logistic growth model, invoke a mean–field assumption which is equivalent to assuming that individuals within the population interact with each other in proportion to the average population density. Implementing such assumptions implies that the dynamics of the system are unaffected by spatial structure, such as the formation of patches or clusters within the population. Recent theoretical developments have introduced a class of models, known as moment dynamics models, which aim to account for the dynamics of individuals, pairs of individuals, triplets of individuals and so on. Such models enable us to describe the dynamics of populations with clustering, however, little progress has been made with regard to applying moment dynamics models to experimental data. Here, we report new experimental results describing the formation of a monolayer of cells using two different cell types: 3T3 fibroblast cells and MDA MB 231 breast cancer cells. Our analysis indicates that the 3T3 fibroblast cells are relatively motile and we observe that the 3T3 fibroblast monolayer forms without clustering. Alternatively, the MDA MB 231 cells are less motile and we observe that the MDA MB 231 monolayer formation is associated with significant clustering. We calibrate a moment dynamics model and a standard mean–field model to both data sets. Our results indicate that the mean–field and moment dynamics models provide similar descriptions of the 3T3 fibroblast monolayer formation whereas these two models give very different predictions for the MDA MD 231 monolayer formation. These outcomes indicate that standard mean–field models of collective cell behaviour are not always appropriate and that care ought to be exercised when implementing such a model.