Growth of confined cancer spheroids : a combined experimental marker, critical modelling approach
Data(s) |
22/01/2013
|
---|---|
Resumo |
A critical step in the dissemination of ovarian cancer is the formation of multicellular spheroids from cells shed from the primary tumour. The objectives of this study were to apply bioengineered three-dimensional (3D) microenvironments for culturing ovarian cancer spheroids in vitro and simultaneously to build on a mathematical model describing the growth of multicellular spheroids in these biomimetic matrices. Cancer cells derived from human epithelial ovarian carcinoma were embedded within biomimetic hydrogels of varying stiffness and grown for up to 4 weeks. Immunohistochemistry, imaging and growth analyses were used to quantify the dependence of cell proliferation and apoptosis on matrix stiffness, long-term culture and treatment with the anti-cancer drug paclitaxel. The mathematical model was formulated as a free boundary problem in which each spheroid was treated as an incompressible porous medium. The functional forms used to describe the rates of cell proliferation and apoptosis were motivated by the experimental work and predictions of the mathematical model compared with the experimental output. This work aimed to establish whether it is possible to simulate solid tumour growth on the basis of data on spheroid size, cell proliferation and cell death within these spheroids. The mathematical model predictions were in agreement with the experimental data set and simulated how the growth of cancer spheroids was influenced by mechanical and biochemical stimuli including matrix stiffness, culture duration and administration of a chemotherapeutic drug. Our computational model provides new perspectives on experimental results and has informed the design of new 3D studies of chemoresistance of multicellular cancer spheroids. |
Formato |
application/pdf |
Identificador | |
Publicador |
R S C Publications |
Relação |
http://eprints.qut.edu.au/57715/2/57715.pdf DOI:10.1039/C3IB20252F Loessner, Daniela, Flegg, Jennifer Anne, Byrne, Helen M., Clements, Judith, & Hutmacher, Dietmar (2013) Growth of confined cancer spheroids : a combined experimental marker, critical modelling approach. Integrative Biology, 5(3), pp. 597-605. |
Direitos |
Copyright 2013 Royal Society of Chemistry. |
Fonte |
School of Biomedical Sciences; Faculty of Health; Institute of Health and Biomedical Innovation; School of Mathematical Sciences; Science & Engineering Faculty |
Palavras-Chave | #010300 NUMERICAL AND COMPUTATIONAL MATHEMATICS #060100 BIOCHEMISTRY AND CELL BIOLOGY #bioengineered microenvironment #multicellular spheroids #mathematical modelling |
Tipo |
Journal Article |