895 resultados para Epitaxial Graphene
Resumo:
In this work, we investigate the intrinsic limits of subthreshold slope in a dual gated bilayer graphene transistor using a coupled self-consistent Poisson-bandstructure solver. We benchmark the solver by matching the bias dependent band gap results obtained from the solver against published experimental data. We show that the intrinsic bias dependence of the electronic structure and the self-consistent electrostatics limit the subthreshold slope obtained in such a transistor well above the Boltzmann limit of 60 mV/decade at room temperature, but much below the results experimentally shown till date, indicating room for technological improvement of bilayer graphene.
Resumo:
Graphene has generated, great sensation due to its amazing properties,and extensive research is being pursued on single as well as bi- and few-layer graphenes. In this Perspective, we highlight some aspects of graphene synthesis surface, magnetic, and mechanical properties, as well as effects of doping and indicate a few useful directions for future research.
Resumo:
A density-functional approach on the hexagonal graphene lattice is developed using an exact numerical solution to the Hubbard model as the reference system. Both nearest-neighbour and up to third nearest-neighbour hoppings are considered and exchange-correlation potentials within the local density approximation are parameterized for both variants. The method is used to calculate the ground-state energy and density of graphene flakes and infinite graphene sheet. The results are found to agree with exact diagonalization for small systems, also if local impurities are present. In addition, correct ground-state spin is found in the case of large triangular and bowtie flakes out of the scope of exact diagonalization methods.
Resumo:
Stone-Wales (SW) defects, analogous to dislocations in crystals, play an important role in mechanical behavior of sp(2)-bonded carbon based materials. Here, we show using first-principles calculations that a marked anisotropy in the interaction among the SW defects has interesting consequences when such defects are present near the edges of a graphene nanoribbon: depending on their orientation with respect to edge, they result in compressive or tensile stress, and the former is responsible to depression or warping of the graphene nanoribbon. Such warping results in delocalization of electrons in the defect states.
Resumo:
We present a simplified theory of the effective momentum mass (EMM) and ballistic current–voltage relationship in a degenerate two-folded highly asymmetric bilayer graphene nanoribbon. With an increase in the gap, the density-of-states in the lower set of subbands increases more than that of the upper set. This results in a phenomenological population inversion of carriers, which is reflected through a net negative differential conductance (NDC). It is found that with the increase of the ribbon width, the NDC also increases. The population inversion also signatures negative values of EMM above a certain ribbon-width for the lower set of subbands, which increases in a step-like manner with the applied longitudinal static bias. The well-known result for symmetric conditions has been obtained as a special case.
Resumo:
The growth of strongly oriented or epitaxial thin films of metal oxides generally requires relatively high growth temperatures or infusion of energy to the growth surface through means such as ion bombardment. We have grown high quality epitaxial thin films of Co3O4 on different substrates at a temperature as low as 400 degreesC by low-pressure metalorganic chemical vapour deposition (MOCVD) using cobalt(II) acetylacetonate as the precursor. With oxygen as the reactant gas, polycrystalline Co3O4 films are formed on glass and Si (100) in the temperature range 400-550 degreesC. Under similar conditions of growth. highly oriented films of Co3O4 are formed on SrTiO3 (100) and LaAlO3 (100). The activation energy for the growth of polycrystalline films on glass is significantly higher than that for epitaxial growth on SrTiO3 (100). The film on LaAlO3 (100) grown at 450 degreesC shows a rocking curve FWHM of 1.61 degrees, which reduces to 1.32 degrees when it is annealed in oxygen at 725 degreesC. The film on SrTiO3 (100) has a FWHM of 0.33 degrees (as deposited) and 0.29 (after annealing at 725 degreesC). The phi -scan analysis shows cube-on-cube epitaxy on both these substrates. The quality of epitaxy on SrTiO3 (100) is comparable to the best of the perovskite-based oxide thin films grown at significantly higher temperatures. A plausible mechanism is proposed for the observed low temperature epitaxy. (C) 2001 Published by Elsevier Science B.V.
Resumo:
We demonstrate a top-gated field effect transistor made of a reduced graphene oxide (RGO) monolayer (graphene) by dielectrophoresis. The Raman spectrum of RGO flakes of typical size of 5 mu m x 5 mu m shows a single 2D band at 2687 cm(-1), characteristic of single-layer graphene.The two-probe current-voltage measurements of RGO flakes, deposited in between the patterned electrodes with a gap of 2.5 mu m using ac dielectrophoresis, show ohmic behavior with a resistance of similar to 37 k Omega. The temperature dependence of the resistance (R) of RGO measured between 305 K and 393 K yields a temperature coefficient of resistance [dR/dT]/R similar to -9.5 x 10(-4)/K, the same as that of mechanically exfoliated single-layer graphene. The field-effect transistor action was obtained by electrochemical top-gating using a solid polymer electrolyte (PEO + LiClO4) and Pt wire. The ambipolar nature of graphene flakes is observed up to a doping level of similar to 6 x 10(12)/cm(2) and carrier mobility of similar to 50 cm(2)/V s. The source-drain current characteristics show a tendency of current saturation at high source-drain voltage which is analyzed quantitatively by a diffusive transport model. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this work, using self-consistent tight-binding calculations. for the first time, we show that a direct to indirect band gap transition is possible in an armchair graphene nanoribbon by the application of an external bias along the width of the ribbon, opening up the possibility of new device applications. With the help of the Dirac equation, we qualitatively explain this band gap transition using the asymmetry in the spatial distribution of the perturbation potential produced inside the nanoribbon by the external bias. This is followed by the verification of the band gap trends with a numerical technique using Magnus expansion of matrix exponentials. Finally, we show that the carrier effective masses possess tunable sharp characters in the vicinity of the band gap transition points.
Resumo:
Strained epitaxial La0.5Sr0.5CoO3 films are grown on LaAlO3 substrate. Structural, electrical,and magnetic measurements were carried out. Out of plane lattice parameter of the film undergoes compressive strain and the coercivity is enhanced. The zero field cooled (ZFC) magnetization curve for a field applied parallel to the film plane shows a jump, which suggests a spin reorientation transition (SRT), while ZFC magnetization for a field applied perpendicular to the film plane is featureless. This jump in magnetization is shifted to higher temperatures when the magnetic field is reduced. The SRT is attributed to the strain in the film. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
With respect to GaAs epitaxial lift-off technology, we report here the optimum atomic spacing (5-10 nm) needed to etch off the AlAs release layer that is sandwiched between two GaAs epitaxial layers. The AlAs etching rate in hydrofluoric acid based solutions was monitored as a function of release layer thickness. We found a sudden quenching in the etching rate, approximately 20 times that of the peak value, at lower dimensions (similar to2.5 nm) of the AlAs epitaxial layer. Since this cannot be explained on the basis of a previous theory (inverse square root of release layer thickness), we propose a diffusion-limited mechanism to explain this reaction process. With the diffusion constant being a mean-free-path-dependent parameter, a relation between the mean free path and the width of the channel is considered. This relation is in reasonable agreement with the experimental results and gives a good physical insight to the reaction kinetics.
Resumo:
In this article, an ultrasonic wave propagation in graphene sheet is studied using nonlocal elasticity theory incorporating small scale effects. The graphene sheet is modeled as an isotropic plate of one-atom thick. For this model, the nonlocal governing differential equations of motion are derived from the minimization of the total potential energy of the entire system. An ultrasonic type of wave propagation model is also derived for the graphene sheet. The nonlocal scale parameter introduces certain band gap region in in-plane and flexural wave modes where no wave propagation occurs. This is manifested in the wavenumber plots as the region where the wavenumber tends to infinite or wave speed tends to zero. The frequency at which this phenomenon occurs is called the escape frequency. The explicit expressions for cutoff frequencies and escape frequencies are derived. The escape frequencies are mainly introduced because of the nonlocal elasticity. Obviously these frequencies are function of nonlocal scaling parameter. It has also been obtained that these frequencies are independent of y-directional wavenumber. It means that for any type of nanostructure, the escape frequencies are purely a function of nonlocal scaling parameter only. It is also independent of the geometry of the structure. It has been found that the cutoff frequencies are function of nonlocal scaling parameter (e(0)a) and the y-directional wavenumber (k(y)). For a given nanostructure, nonlocal small scale coefficient can be obtained by matching the results from molecular dynamics (MD) simulations and the nonlocal elasticity calculations. At that value of the nonlocal scale coefficient, the waves will propagate in the nanostructure at that cut-off frequency. In the present paper, different values of e(o)a are used. One can get the exact e(0)a for a given graphene sheet by matching the MD simulation results of graphene with the results presented in this paper. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
By employing X-ray photoelectron spectroscopy (XPS), we have been able to establish the occurrence of charge-transfer doping in few-layer graphene covered with electron acceptor (TCNE) and donor (TTF) molecules. We have performed quantitative estimates of the extent of charge transfer in these complexes and elucidated the origin of unusual shifts of their Raman G-bands and explained the differences in the dependence of conductivity on n- and p-doping. The study unravels the cause of the apparent difference between the charge-transfer doping and electrochemical doping. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Nanomaterials with a hexagonally ordered atomic structure, e.g., graphene, carbon and boron nitride nanotubes, and white graphene (a monolayer of hexagonal boron nitride) possess many impressive properties. For example, the mechanical stiffness and strength of these materials are unprecedented. Also, the extraordinary electronic properties of graphene and carbon nanotubes suggest that these materials may serve as building blocks of next generation electronics. However, the properties of pristine materials are not always what is needed in applications, but careful manipulation of their atomic structure, e.g., via particle irradiation can be used to tailor the properties. On the other hand, inadvertently introduced defects can deteriorate the useful properties of these materials in radiation hostile environments, such as outer space. In this thesis, defect production via energetic particle bombardment in the aforementioned materials is investigated. The effects of ion irradiation on multi-walled carbon and boron nitride nanotubes are studied experimentally by first conducting controlled irradiation treatments of the samples using an ion accelerator and subsequently characterizing the induced changes by transmission electron microscopy and Raman spectroscopy. The usefulness of the characterization methods is critically evaluated and a damage grading scale is proposed, based on transmission electron microscopy images. Theoretical predictions are made on defect production in graphene and white graphene under particle bombardment. A stochastic model based on first-principles molecular dynamics simulations is used together with electron irradiation experiments for understanding the formation of peculiar triangular defect structures in white graphene. An extensive set of classical molecular dynamics simulations is conducted, in order to study defect production under ion irradiation in graphene and white graphene. In the experimental studies the response of carbon and boron nitride multi-walled nanotubes to irradiation with a wide range of ion types, energies and fluences is explored. The stabilities of these structures under ion irradiation are investigated, as well as the issue of how the mechanism of energy transfer affects the irradiation-induced damage. An irradiation fluence of 5.5x10^15 ions/cm^2 with 40 keV Ar+ ions is established to be sufficient to amorphize a multi-walled nanotube. In the case of 350 keV He+ ion irradiation, where most of the energy transfer happens through inelastic collisions between the ion and the target electrons, an irradiation fluence of 1.4x10^17 ions/cm^2 heavily damages carbon nanotubes, whereas a larger irradiation fluence of 1.2x10^18 ions/cm^2 leaves a boron nitride nanotube in much better condition, indicating that carbon nanotubes might be more susceptible to damage via electronic excitations than their boron nitride counterparts. An elevated temperature was discovered to considerably reduce the accumulated damage created by energetic ions in both carbon and boron nitride nanotubes, attributed to enhanced defect mobility and efficient recombination at high temperatures. Additionally, cobalt nanorods encapsulated inside multi-walled carbon nanotubes were observed to transform into spherical nanoparticles after ion irradiation at an elevated temperature, which can be explained by the inverse Ostwald ripening effect. The simulation studies on ion irradiation of the hexagonal monolayers yielded quantitative estimates on types and abundances of defects produced within a large range of irradiation parameters. He, Ne, Ar, Kr, Xe, and Ga ions were considered in the simulations with kinetic energies ranging from 35 eV to 10 MeV, and the role of the angle of incidence of the ions was studied in detail. A stochastic model was developed for utilizing the large amount of data produced by the molecular dynamics simulations. It was discovered that a high degree of selectivity over the types and abundances of defects can be achieved by carefully selecting the irradiation parameters, which can be of great use when precise pattering of graphene or white graphene using focused ion beams is planned.
Resumo:
Third-order nonlinear absorption and refraction coefficients of a few-layer boron carbon nitride (BCN) and reduced graphene oxide (RGO) suspensions have been measured at 3.2 eV in the femtosecond regime. Optical limiting behavior is exhibited by BCN as compared to saturable absorption in RGO. Nondegenerate time-resolved differential transmissions from BCN and RGO show different relaxation times. These differences in the optical nonlinearity and carrier dynamics are discussed in the light of semiconducting electronic band structure of BCN vis-a-vis the Dirac linear band structure of graphene. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The discovery of graphene has aroused great interest in the properties and phenomena exhibited by two-dimensional inorganic materials, especially when they comprise only a single, two or a few layers. Graphene-like MoS2 and WS2 have been prepared by chemical methods, and the materials have been characterized by electron microscopy, atomic force microscopy (AFM) and other methods. Boron nitride analogues of graphene have been obtained by a simple chemical procedure starting with boric acid and urea and have been characterized by various techniques that include surface area measurements. A new layered material with the composition BCN possessing a few layers and a large surface area discovered recently exhibits a large uptake of CO2.