952 resultados para Energy-Harvesting
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Sensor and actuator based on laminated piezocomposite shells have shown increasing demand in the field of smart structures. The distribution of piezoelectric material within material layers affects the performance of these structures; therefore, its amount, shape, size, placement, and polarization should be simultaneously considered in an optimization problem. In addition, previous works suggest the concept of laminated piezocomposite structure that includes fiber-reinforced composite layer can increase the performance of these piezoelectric transducers; however, the design optimization of these devices has not been fully explored yet. Thus, this work aims the development of a methodology using topology optimization techniques for static design of laminated piezocomposite shell structures by considering the optimization of piezoelectric material and polarization distributions together with the optimization of the fiber angle of the composite orthotropic layers, which is free to assume different values along the same composite layer. The finite element model is based on the laminated piezoelectric shell theory, using the degenerate three-dimensional solid approach and first-order shell theory kinematics that accounts for the transverse shear deformation and rotary inertia effects. The topology optimization formulation is implemented by combining the piezoelectric material with penalization and polarization model and the discrete material optimization, where the design variables describe the amount of piezoelectric material and polarization sign at each finite element, with the fiber angles, respectively. Three different objective functions are formulated for the design of actuators, sensors, and energy harvesters. Results of laminated piezocomposite shell transducers are presented to illustrate the method. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
Il contesto generale nel quale è inserito tale elaborato di tesi è la tecnologia RFID; se ne fa una disamina completa, partendo dalla ricostruzione delle tappe storiche che hanno portato alla sua diffusione. Viene data particolare enfasi alle differenze esistenti tra le varie tipologie, alle frequenze a cui possono operare i dispositivi e agli standard legislativi vigenti. Vengono enunciati inoltre i costi dei dispositivi e le critiche verso la tecnologia. L'obiettivo della tesi è quello di valutare la possibilità di realizzare un meccanismo di monitoraggio a breve raggio di dispositivi dotati di rfid: per questo la visione che si da della tecnologia è il più completa possibile. La prerogativa di lunga durata richiesta dal sistema ha portato a valutare se potesse essere utile integrare un meccanismo di recupero energia; per questo si prosegue con una disamina dell'energy harvesting, fornendo dettagli su tutte le fonti da cui è possibile recuperare energia e casi pratici di meccanismi realizzati, sia che questi siano già presenti sul mercato, sia che siano solo risultati di ricerche e prototipi. Si conclude quindi il lavoro valutando le effettive possibilità di realizzazione del sistema, evidenziando le scelte consigliate per una migliore esecuzione.
Resumo:
In questa tesi vengono analizzati alcuni schemi circuitali di convertitori di micro potenze da generatori termoelettrici sottoposti a gradienti di temperatura limitati. I circuiti, basati su oscillatori step-up in grado di innescarsi con tensioni di alimentazione estremamente basse, sono stati analizzati dal punto di vista teorico e mediante successive simulazioni circuitali. Le potenze ottenibili con gradienti di temperatura inferiori a 10K risultano tipicamente comprese tra qualche uW e qualche decina di uW, con efficienze fino a circa il 40%.
Resumo:
In questa tesi viene illustrato il progetto di un sistema di controllo per uno shaker elettrodinamico. L'architettura è basata su sistemi a microcontrollore Microchip PIC e implementa un controllo in retroazione al fine di ottenere una elevata precisione nell'ampiezza dell'oscillazione. Un prototipo del sistema è stato implementato con componenti commerciali. Vengono presentati i risultati del test funzionale dei sotto-circuiti realizzati.
Resumo:
Nel presente elaborato è trattato l'innesco di un sistema di recupero ambientale di energia da sorgenti a radiofrequenza, captate tramite rectenna, nell'ambito di un sistema completamente autonomo dal punto di vista energetico, quindi non dotato di batteria ricaricabile interna. Dopo un'analisi dei problemi da affrontare e delle possibili soluzioni tecniche per gestire le micropotenze restituite dalla rectenna, ci si concentra in modo preferenziale sul ruolo del condensatore posto sulla porta d'ingresso dell'oscillatore di Meissner, che è utilizzato come elevatore di tensione per attivare gli stadi successivi. Sfruttando le esperienze con lo stesso oscillatore pilotato da altri sensori di energy harvesting, è possibile determinare approssimativamente se il circuito si presta o meno all'utilizzo con le rectenne nei campi RF, suggerendo eventuali migliorie da apportare per facilitarne il funzionamento.
Resumo:
L'energy harvesting è un processo in cui l'energia ambientale comunemente disponibile viene catturata mediante opportuni trasduttori e circuiti elettronici per essere convertita in energia elettrica utilizzabile. Il progetto descritto sarà una estensione ed integrazione di un sistema già esistente, per la riproduzione attraverso un sistema elettrodinamico vibrante (shaker), di vibrazioni acquisite dall'ambiente circostante in situazioni di riferimento tipiche (esempio le vibrazioni prodotte da un veicolo in movimento o un uomo in corsa), al fine di caratterizzare trasduttori piezoelettrici per studiarne il funzionamento, le caratteristiche e il loro comportamento. Lo scopo finale è quello di realizzare un sistema stand-alone che sia in grado di riprodurre e controllare in maniera affidabile le vibrazioni imposte da un sistema vibrante, al fine di realizzare un sistema di caratterizzazione per dispositivi di energy harvesting vibrazionale. In questo progetto, l’intera gestione del processo viene affidata ad un microcontrollore presente sulla scheda di controllo, il quale consente in tempo reale la visualizzazione delle forme d’onda oggetto di studio mediante un display grafico, l’elaborazione dei dati presenti nel sistema nonché la possibilità di caricare e salvare dei dati significativi sulla memoria del sistema durante le fasi di testing. Le caratteristiche implementate rendono il sistema facile da usare. Successivamente verranno descritte le specifiche tecniche necessariamente da rispettare per la realizzazione di un sistema che permetta di riprodurre e fornire dati attendibili, la struttura di visualizzazione grafica del sistema, la parte di condizionamento del segnale e i principi teorici del controllo ad anello chiuso.
Resumo:
Questo lavoro si è occupato della ricerca e progettazione di un'antenna UWB per la realizzazione di un tag RFID e si colloca all'interno del progetto GRETA (GREen TAgs), finanziato dal MIUR. Le principali caratteristiche richieste al green tag sono: dimensioni complessive di massimo 4-5 cm, assenza di batterie e compatibilità con l'ambiente. L'eco-compatibilità viene garantita tramite la realizzazione dell'antenna al di sopra di un substrato di carta; i limiti derivanti dall'assenza di batterie vengono invece sopperiti tramite realizzazione di energy harvesting, al fine di raggiungere una completa autonomia energetica. Viene sfruttata la tecnica UWB per la comunicazione nella banda (3.1-4.8 GHz); l'energy harvesting si effettua invece a 868 MHz. Sono infine stati ricavati alcuni primi risultati relativi alla potenza rettificabile con la soluzione proposta, tramite realizzazione di un opportuno circuito rettificatore.
Resumo:
L'elaborato di tesi tratta la caratterizzazione del rendimento di un circuito convertitore di energia elettrica in energia meccanica. La conversione viene svolta con una procedura più complessa, ma più efficiente rispetto alla conversione classica. Il circuito studiato è soggetto alle problematiche legate all'energy harvesting, tuttavia ha il vantaggio di non necessitare di alimentazione esterna.
Resumo:
The present PhD thesis exploits the design skills I have been improving since my master thesis’ research. A brief description of the chapters’ content follows. Chapter 1: the simulation of a complete front–end is a very complex problem and, in particular, is the basis upon which the prediction of the overall performance of the system is possible. By means of a commercial EM simulation tool and a rigorous nonlinear/EM circuit co–simulation based on the Reciprocity Theorem, the above–mentioned prediction can be achieved and exploited for wireless links characterization. This will represent the theoretical basics of the entire present thesis and will be supported by two RF applications. Chapter 2: an extensive dissertation about Magneto–Dielectric (MD) materials will be presented, together with their peculiar characteristics as substrates for antenna miniaturization purposes. A designed and tested device for RF on–body applications will be described in detail. Finally, future research will be discussed. Chapter 3: this chapter will deal with the issue regarding the exploitation of renewable energy sources for low–energy consumption devices. Hence the problem related to the so–called energy harvesting will be tackled and a first attempt to deploy THz solar energy in an innovative way will be presented and discussed. Future research will be proposed as well. Chapter 4: graphene is a very promising material for devices to be exploited in the RF and THz frequency range for a wide range of engineering applications, including those ones marked as the main research goal of the present thesis. This chapter will present the results obtained during my research period at the National Institute for Research and Development in Microtechnologies (IMT) in Bucharest, Romania. It will concern the design and manufacturing of antennas and diodes made in graphene–based technology for detection/rectification purposes.
Resumo:
La tecnologia odierna, orientata sempre di più verso il “low-power”, ha permesso di poter sviluppare sistemi elettronici in grado di autoalimentarsi senza alcun bisogno di sorgenti di energia tradizionali. Questo è possibile, ad esempio, utilizzando trasduttori piezoelettrici, in grado di trasformare l’energia meccanica, provocata ad esempio da una vibrazione, in un’altra forma di energia che, in tal caso, risulta essere una grandezza elettrica. Il settore principale in cui viene impiegato questo componente è quello dell’Energy Harvesting, ovvero un campo dell’elettronica in cui si cerca di estrarre dall'ambiente circostante bassissime quantità di energia mediante tecniche opportune, cercando di ridurre i consumi dei circuiti di controllo annessi e renderli, in maggior parte, il più possibile autosufficienti. L’obiettivo è quello di implementare alcune tecniche di recupero dell’energia mediante circuiti gestiti a microcontrollore e valutare se tali metodiche portino a risultati accettabili in grado di soddisfare quelli che sono i requisiti che il mondo dell’Energy Harvesting richiede.
Resumo:
Wireless Sensor Networks (WSNs) offer a new solution for distributed monitoring, processing and communication. First of all, the stringent energy constraints to which sensing nodes are typically subjected. WSNs are often battery powered and placed where it is not possible to recharge or replace batteries. Energy can be harvested from the external environment but it is a limited resource that must be used efficiently. Energy efficiency is a key requirement for a credible WSNs design. From the power source's perspective, aggressive energy management techniques remain the most effective way to prolong the lifetime of a WSN. A new adaptive algorithm will be presented, which minimizes the consumption of wireless sensor nodes in sleep mode, when the power source has to be regulated using DC-DC converters. Another important aspect addressed is the time synchronisation in WSNs. WSNs are used for real-world applications where physical time plays an important role. An innovative low-overhead synchronisation approach will be presented, based on a Temperature Compensation Algorithm (TCA). The last aspect addressed is related to self-powered WSNs with Energy Harvesting (EH) solutions. Wireless sensor nodes with EH require some form of energy storage, which enables systems to continue operating during periods of insufficient environmental energy. However, the size of the energy storage strongly restricts the use of WSNs with EH in real-world applications. A new approach will be presented, which enables computation to be sustained during intermittent power supply. The discussed approaches will be used for real-world WSN applications. The first presented scenario is related to the experience gathered during an European Project (3ENCULT Project), regarding the design and implementation of an innovative network for monitoring heritage buildings. The second scenario is related to the experience with Telecom Italia, regarding the design of smart energy meters for monitoring the usage of household's appliances.