988 resultados para Electronic integration
Resumo:
293T and Sk-Hep-1 cells were transduced with a replication-defective self-inactivating HIV-1 derived vector carrying FVIII cDNA. The genomic DNA was sequenced to reveal LTR/human genome junctions and integration sites. One hundred and thirty-two sequences matched human sequences, with an identity of at least 98%. The integration sites in 293T-FVIIIDB and in Sk-Hep-FVIIIDB cells were preferentially located in gene regions. The integrations in both cell lines were distant from the CpG islands and from the transcription start sites. A comparison between the two cell lines showed that the lentiviral-transduced DNA had the same preferred regions in the two different cell lines.
Resumo:
Plant-antivenom is a computational Websystem about medicinal plants with anti-venom properties. The system consists of a database of these plants, including scientific publications on this subject and amino acid sequences of active principles from venomous animals. The system relates these data allowing their integration through different search applications. For the development of the system, the first surveys were conducted in scientific literature, allowing the creation of a publication database in a library for reading and user interaction. Then, classes of categories were created, allowing the use of tags and the organization of content. This database on medicinal plants has information such as family, species, isolated compounds, activity, inhibited animal venoms, among others. Provision is made for submission of new information by registered users, by the use of wiki tools. Content submitted is released in accordance to permission rules defined by the system. The database on biological venom protein amino acid sequences was structured from the essential information from National Center for Biotechnology Information (NCBI). Plant-antivenom`s interface is simple, contributing to a fast and functional access to the system and the integration of different data registered on it. Plant-antivenom system is available on the Internet at http://gbi.fmrp.usp.br/plantantivenom.
Resumo:
Objective: To propose an electronic method for sensitivity evaluation in leprosy and to compare it to the Semmes-Weinstein monofilaments. Methods:Thirty patients attending the Dermatology outpatient clinic of HCFMRP-USP were consecutively evaluated by both the electronic aesthesiometer and Semmes-Weinstein monofilaments on hand and foot test points. The intraclass correlation coefficient (ICC) was calculated to determine the variability of the electronic measures and the Kappa coefficient was calculated to determine the agreement between methods according to their categories (altered and non-altered tactile sensitivity). Results: The ICC was approximately 1, demonstrating repeatability. The Kappa coefficient showed more than 75 and 63% agreement on the hand and foot points, respectively. The mean agreement between the 2 methods for the 7 points of the right and left hand was 77.14 and 75.71%, respectively. The mean agreement for all 10 points was 74.33 and 63.66% on the right and left foot, respectively. In cases of disagreement the detection of altered tactile sensitivity by the electronic esthesiometer on the right and left foot was 90.91 and 84.25%, respectively, with no detection by the monofilaments. Conclusion: The results suggest that the electronic esthesiometer is a reliable and easy application, capable of evaluating alterations of tactile sensitivity in leprosy patients. (C) 2009 Elsevier B.V. All rights reserved.
Specification, refinement and verification of concurrent systems: an integration of Object-Z and CSP
Resumo:
Animal cloning by nuclear transfer (NT) has made the production of transgenic animals using genetically modified donor cells possible and ensures the presence of the gene construct in the offspring. The identification of transgene insertion sites in donor cells before cloning may avoid the production of animals that carry undesirable characteristics due to positional effects. This article compares blastocyst development and competence to establish pregnancies of bovine cloned embryos reconstructed with lentivirus-mediated transgenic fibroblasts containing either random integration of a transgene (random integration group) or nuclear transfer derived transgenic fibroblasts with known transgene insertion sites submitted to recloning (recloned group). In the random integration group, eGFP-expressing bovine fetal fibroblasts were selected by fluorescence activated cell sorting (FACS) and used as nuclei donor cells for NT. In the recloned group, a fibroblast cell line derived from a transgenic cloned fetus was characterized regarding transgene insertion and submitted to recloning. The recloned group had higher blastocyst production (25.38 vs. 14.42%) and higher percentage of 30-day pregnancies (14.29 vs. 2.56%) when compared to the random integration group. Relative eGFP expression analysis in fibroblasts derived from each cloned embryo revealed more homogeneous expression in the recloned group. In conclusion, the use of cell lines recovered from transgenic fetuses after identification of the transgene integration site allowed for the production of cells and fetuses with stable transgene expression, and recloning may improve transgenic animal yields.
Resumo:
Objectives. The objectives of this study were to assess the accuracy of working length determination using 3 electronic apex locators and direct digital radiography and to compare the results with those obtained using the visual method (control measurement). Study design. Twenty extracted human maxillary premolars were selected: 17 two-rooted and 3 single-rooted (total of 37 canals). Working length was measured using electronic apex locators Elements Diagnostic, Root ZX, and Just II. Subsequently, teeth were positioned in the alveolar bone of a dry skull and submitted to direct digital radiography. A variation of +/- 1 mm was considered as acceptable. Results were analyzed using the Wilcoxon and the chi(2) tests. Results. Results presented an accuracy of 94.6% for Elements Diagnostic, 91.9% for Root ZX, 73.0% for Just II, and 64.9% for direct digital radiography when considering the margin of +/- 1 mm in relation to the control measurement. Comparisons with the actual control measurements resulted in accuracy results of 13.51%, 13.51%, 10.10%, and 2.70%, respectively. Conclusions. Root ZX and Elements Diagnostic are more accurate in determining working length when compared with Just II and Schick direct digital radiography. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;111:e44-e49)
Resumo:
Objective. The aim of this study was to evaluate the precision of working length determination of 3 electronic apex locators (EALs): Root ZX, RomiApex D-30, and Ipex at 0.0 mm, at the apical foramen (AF), and at 1.0 mm short of the AF. Methodology. Thirty-eight mandibular premolars had their real lengths previously determined. Electronic measurements were determined at 1.0 mm, followed by measurements at 0.0 mm, performed in triplicate. Results. Precision of devices at 1.0 mm and 0.0 mm were: 94.7% and 97.4%, respectively (Root ZX); 78.9% and 97.4% (RomiApex D-30); and 76.3% and 97.4% (Ipex). Although no statistical differences were observed between the EALs at 0.0, at 1.0 mm Root ZX performed significantly better than the others. Conclusion. The EALs had acceptable precision when measuring the working length at the AF. However, when used at levels short of the AF, only Root ZX did not suffer a significant negative effect on precision. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2010;110:e57-e61)
Resumo:
Introduction: The aim of this study was to compare the influence of preflaring on the accuracy of 4 electronic apex locators (EALs): Root ZX, Elements Diagnostic Unit and Apex Locator, Mini Apex Locator, and Apex DSP. Methods: Forty extracted teeth were preflared by using S1 and SX ProTaper instruments. The working length was established by reducing 1 mm from the total length (TL). The ability of the EALs to detect precise (-1 mm from TL) and acceptable (-1+/-0.5 mm from TL) measurements in unflared and preflared canals was determined. Results: The precise and acceptable (P/A) readings in unflared canals for Root ZX, Elements Diagnostic Unit and Apex Locator, Mini Apex and Apex DSP were 50%/97.5%, 47.5%/95%, 50%/97.5%, and 45%/67.5%, respectively. For preflared canals, the readings were 75%/97.5%, 55%/95%, 75%/97.5%, and 60%/87.5%, respectively. For precise criteria, the preflared procedure increased the percentage of accurate electronic readings for the Root ZX and the Mini Apex Locator (P < .05). For acceptable criteria, no differences were found among Root ZX, Elements Diagnostic Unit and Apex Locator, and Mini Apex Locator (P > .05). Fisher test indicated the lower accuracy for Apex DSP (P < .05). Conclusions: The Root ZX and the Mini Apex Locator devices increased significantly the precision to determine the real working length after the preflaring procedure. All the EALs showed an acceptable determination of the working length between the ranges of+/-0.5mm except for the Apex DSP device, which had the lowest accuracy. (J Endod 2009;35:1300-1302)