961 resultados para DNA directed DNA polymerase beta


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phycodnaviruses have a significant role in modulating the dynamics of phytoplankton, thereby influencing community structure and succession, nutrient cycles and potentially atmospheric composition because phytoplankton fix about half the carbon dioxide (CO2) on the planet, and some algae release dimethylsulphoniopropionate when lysed by viruses. Despite their ecological importance and widespread distribution, relatively little is known about the evolutionary history, phylogenetic relationships and phylodynamics of the Phycodnaviruses from freshwater environments. Herein we provide novel data on Phycodnaviruses from the largest river system on earth-the Amazon Basin-that were compared with samples from different aquatic systems from several places around the world. Based on phylogenetic inference using DNA polymerase (pol) sequences we show the presence of distinct populations of Phycodnaviridae. Preliminary coarse-grained phylodynamics and phylogeographic inferences revealed a complex dynamics characterized by long-term fluctuations in viral population sizes, with a remarkable worldwide reduction of the effective population around 400 thousand years before the present (KYBP), followed by a recovery near to the present time. Moreover, we present evidence for significant viral gene flow between freshwater environments, but crucially almost none between freshwater and marine environments. The ISME Journal (2012) 6, 237-247; doi: 10.1038/ismej.2011.93; published online 28 July 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous gamma H2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the alpha-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-alpha primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background HBV genotype F is primarily found in indigenous populations from South America and is classified in four subgenotypes (F1 to F4). Subgenotype F2a is the most common in Brazil among genotype F cases. The aim of this study was to characterize HBV genotype F2a circulating in 16 patients from São Paulo, Brazil. Samples were collected between 2006 and 2012 and sent to Hospital Israelita Albert Einstein. A fragment of 1306 bp partially comprising HBsAg and DNA polymerase coding regions was amplified and sequenced. Viral sequences were genotyped by phylogenetic analysis using reference sequences from GenBank (n=198), including 80 classified as subgenotype F2a. Bayesian Markov chain Monte Carlo simulation implemented in BEAST v.1.5.4 was applied to obtain the best possible estimates using the model of nucleotide substitutions GTR+G+I. Findings It were identified three groups of sequences of subgenotype F2a: 1) 10 sequences from São Paulo state; 2) 3 sequences from Rio de Janeiro and one from São Paulo states; 3) 8 sequences from the West Amazon Basin. Conclusions These results showing for the first time the distribution of F2a subgenotype in Brazil. The spreading and the dynamic of subgenotype F2a in Brazil requires the study of a higher number of samples from different regions as it is unfold in almost all Brazilian populations studied so far. We cannot infer with certainty the origin of these different groups due to the lack of available sequences. Nevertheless, our data suggest that the common origin of these groups probably occurred a long time ago.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background DNA polymerase γ (POLG) is the only known mitochondrial DNA (mtDNA) polymerase. It mediates mtDNA replication and base excision repair. Mutations in the POLG gene lead to reduction of functional mtDNA (mtDNA depletion and/or deletions) and are therefore predicted to result in defective oxidative phosphorylation (OXPHOS). Many mutations map to the polymerase and exonuclease domains of the enzyme and produce a broad clinical spectrum. The most frequent mutation p.A467T is localised in the linker region between these domains. In compound heterozygote patients the p.A467T mutation has been described to be associated amongst others with fatal childhood encephalopathy. These patients have a poorer survival rate compared to homozygotes. Methods mtDNA content in various tissues (fibroblasts, muscle and liver) was quantified using quantitative PCR (qPCR). OXPHOS activities in the same tissues were assessed using spectrophotometric methods and catalytic stain of BN-PAGE. Results We characterise a novel splice site mutation in POLG found in trans with the p.A467T mutation in a 3.5 years old boy with valproic acid induced acute liver failure (Alpers-Huttenlocher syndrome). These mutations result in a tissue specific depletion of the mtDNA which correlates with the OXPHOS-activities. Conclusions mtDNA depletion can be expressed in a high tissue-specific manner and confirms the need to analyse primary tissue. Furthermore, POLG analysis optimises clinical management in the early stages of disease and reinforces the need for its evaluation before starting valproic acid treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coats plus is a highly pleiotropic disorder particularly affecting the eye, brain, bone and gastrointestinal tract. Here, we show that Coats plus results from mutations in CTC1, encoding conserved telomere maintenance component 1, a member of the mammalian homolog of the yeast heterotrimeric CST telomeric capping complex. Consistent with the observation of shortened telomeres in an Arabidopsis CTC1 mutant and the phenotypic overlap of Coats plus with the telomeric maintenance disorders comprising dyskeratosis congenita, we observed shortened telomeres in three individuals with Coats plus and an increase in spontaneous γH2AX-positive cells in cell lines derived from two affected individuals. CTC1 is also a subunit of the α-accessory factor (AAF) complex, stimulating the activity of DNA polymerase-α primase, the only enzyme known to initiate DNA replication in eukaryotic cells. Thus, CTC1 may have a function in DNA metabolism that is necessary for but not specific to telomeric integrity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following field observations of wild Agassiz's desert tortoises (Gopherus agassizii) with oral lesions similar to those seen in captive tortoises with herpesvirus infection, we measured the prevalence of antibodies to Testudinid herpesvirus (TeHV) 3 in wild populations of desert tortoises in California. The survey revealed 30.9% antibody prevalence. In 2009 and 2010, two wild adult male desert tortoises, with gross lesions consistent with trauma and puncture wounds, respectively, were necropsied. Tortoise 1 was from the central Mojave Desert and tortoise 2 was from the northeastern Mojave Desert. We extracted DNA from the tongue of tortoise 1 and from the tongue and nasal mucosa of tortoise 2. Sequencing of polymerase chain reaction products of the herpesviral DNA-dependent DNA polymerase gene and the UL39 gene respectively showed 100% nucleotide identity with TeHV2, which was previously detected in an ill captive desert tortoise in California. Although several cases of herpesvirus infection have been described in captive desert tortoises, our findings represent the first conclusive molecular evidence of TeHV2 infection in wild desert tortoises. The serologic findings support cross-reactivity between TeHV2 and TeHV3. Further studies to determine the ecology, prevalence, and clinical significance of this virus in tortoise populations are needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To identify systemic sclerosis (SSc) susceptibility loci via a genome-wide association study. METHODS: A genome-wide association study was performed in 137 patients with SSc and 564 controls from Korea using the Affymetrix Human SNP Array 5.0. After fine-mapping studies, the results were replicated in 1,107 SSc patients and 2,747 controls from a US Caucasian population. RESULTS: The single-nucleotide polymorphisms (SNPs) (rs3128930, rs7763822, rs7764491, rs3117230, and rs3128965) of HLA-DPB1 and DPB2 on chromosome 6 formed a distinctive peak with log P values for association with SSc susceptibility (P=8.16x10(-13)). Subtyping analysis of HLA-DPB1 showed that DPB1*1301 (P=7.61x10(-8)) and DPB1*0901 (P=2.55x10(-5)) were the subtypes most susceptible to SSc in Korean subjects. In US Caucasians, 2 pairs of SNPs, rs7763822/rs7764491 and rs3117230/rs3128965, showed strong association with SSc patients who had either circulating anti-DNA topoisomerase I (P=7.58x10(-17)/4.84x10(-16)) or anticentromere autoantibodies (P=1.12x10(-3)/3.2x10(-5)), respectively. CONCLUSION: The results of our genome-wide association study in Korean subjects indicate that the region of HLA-DPB1 and DPB2 contains the loci most susceptible to SSc in a Korean population. The confirmatory studies in US Caucasians indicate that specific SNPs of HLA-DPB1 and/or DPB2 are strongly associated with US Caucasian patients with SSc who are positive for anti-DNA topoisomerase I or anticentromere autoantibodies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A means of analyzing protein quaternary structure using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI MS) and chemical crosslinking was evaluated. Proteins of known oligomeric structure, as well as monomeric proteins, were analyzed to evaluate the method. The quaternary structure of proteins of unknown or uncertain structure was investigated using this technique. The stoichiometry of recombinant E. coli carbamoyl phosphate synthetase and recombinant human farnesyl protein transferase were determined to be heterodimers using glutaraldehyde crosslinking, agreeing with the stoichiometry found for the wild type proteins. The stoichiometry of the gamma subunit of E. coli DNA polymerase III holoenzyme was determined in solution without the presence of other subunits to be a homotetramer using glutaraldehyde crosslinking and MALDI MS analysis. Chi and psi subunits of E. coli DNA polymerase III subunits appeared to form a heterodimer when crosslinked with heterobifunctional photoreactive crosslinkers.^ Comparison of relative % peak areas obtained from MALDI MS analysis of crosslinked proteins and densitometric scanning of silver stained sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gels showed excellent qualitative agreement for the two techniques, but the quantitative analyses differed, sometimes significantly. This difference in quantitation could be due to SDS-PAGE conditions (differential staining, loss of sample) or to MALDI MS conditions (differences in ionization and/or detection). Investigation of pre-purified crosslinked monomers and dimers recombined in a specific ratio revealed the presence of mass discrimination in the MALDI MS process. The calculation of mass discrimination for two different MALDI time-of-flight instruments showed the loss of a factor of approximately 2.6 in relative peak area as the m/z value doubles over the m/z range from 30,000 to 145,000 daltons.^ Indirect symmetry was determined for tetramers using glutaraldehyde crosslinking with MALDI MS analysis. Mathematical modelling and simple graphing allowed the determination of the symmetry for several tetramers known to possess isologous D2 symmetry. These methods also distinguished tetramers that did not fit D2 symmetry such as apo-avidin. The gamma tetramer of E. coli DNA polymerase III appears to have isologous D2 symmetry. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two murine leukemia viruses (MuLVs), Rauscher (R-MuLV) and Moloney (Mo-MuLV) MuLVs, were studied to identify the biosynthetic pathways leading to the generation of mature virion proteins. Emphasis was placed on the examination of the clone 1 Mo-MuLV infected cell system.^ At least three genetic loci vital to virion replication exist on the MuLV genome. The 'gag' gene encodes information for the virion core proteins. The 'pol' gene specifies information for the RNA-dependent-DNA-polymerase (pol), or reverse transcriptase (RT). The 'env' gene contains information for the virion envelope proteins.^ MuLV specified proteins were synthesized by way of precursor polyproteins, which were processed to yield mature virion proteins. Pulse-chase kinetic studies, radioimmunoprecipitation, and peptide mapping were the techniques used to identify and characterize the MuLV viral precursor polyproteins and mature virion proteins.^ The 'gag' gene of Mo-MuLV coded for two primary gene products. One 'gag' gene product was found to be a polyprotein of 65,000 daltons M(,r) (Pr65('gag)). Pr65('gag) contained the antigenic and structural determinants of all four viral core proteins--p30, p15, pp12 and p10. Pr65('gag) was the major intracellular precursor polyprotein in the generation of mature viral core proteins. The second 'gag' gene product was a glycosylated gene product (gPr('gag)). An 85,000 dalton M(,r) polyprotein (gPr85('gag)) and an 80,000 dalton M(,r) (gPr80('gag)) polyprotein were the products of the 'gag' genes of Mo-MuLV and R-MuLV, respectively. gPr('gag) contained the antigenic and structural determinants of the four virion core proteins. In addition, gPr('gag) contained peptide information over and above that of Pr65('gag). Pulse-chase kinetic studies in the presence of tunicamycin revealed a separate processing pathway of gPr('gag) that did not seem to involve the generation of mature virion core proteins. Subglycosylated gPr('gag) was found to have a molecular weight of 75,000 daltons (Pr75('gag)) for both Mo-MuLV and R-MuLV.^ The Mo-MuLV 'pol' gene product was initially synthesized as a read-through 'gag-pol' intracellular polyprotein containing both antigenic and structural determinants of both the 'gag' and 'pol' genes. This read-through polyprotein was found to be a closely spaced doublet of two similarly sized proteins at 220-200,000 daltons M(,r) (Pr220/200('gag-pol)). Pulse-chase kinetic studies revealed processing of Pr220/200('gag-pol) to unstable intermediate intracellular proteins of 145,000 (Pr145('pol)), 135,000 (Pr135('pol)), and 125,000 (Pr125('pol)) daltons M(,r). Further chase incubations demonstrated the appearance of an 80,000 dalton M(,r) protein, which represented the mature polymerase (p80('pol)).^ The primary intracellular Mo-MuLV 'env' gene product was found to be a glycosylated polyprotein of 83,000 daltons M(,r) (gPr83('env)). gPr83('env) contained the antigenic and structural determinants of both mature virion envelope proteins, gp70 and p15E. In addition, gPr83('env) contained unique peptide sequences not present in either gp70 or p15E. The subglycosylated form of gPr83('env) had a molecular weight of 62,000 daltons (Pr62('env)).^ Virion core proteins of R-MuLV and Mo-MuLV were examined. Structural homology was observed betwen p30s and p10s. Significant structural non-homology was demonstrated between p15s and pp12s. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tricyclo-DNA (tc-DNA) is a conformationally restricted oligonucleotide analogue that exhibits promising properties as a robust antisense agent. Here we report on the synthesis and biochemical characterization of tc-TTP, the triphosphate of a tc-DNA nucleoside containing the base thymine. Tc-TTP turned out to be a substrate for the Vent (exo−) DNA polymerase, a polymerase that allows for multiple incorporations of tc-T nucleotides under primer extension reaction conditions. However, the substrate acceptance is rather low, as also observed for other sugar-modified analogues. Tc-TTP and tc-nucleotide-containing templates do not sustain enzymatic polymerization under physiological conditions; this indicates that tc-DNA-based antisense agents will not enter natural metabolic pathways that lead to long-term toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complete reference genome of the Apis mellifera Filamentous virus (AmFV) was determined using Illumina Hiseq sequencing. The AmFV genome is a double stranded DNA molecule of approximately 498,500 nucleotides with a GC content of 50.8%. It encompasses 247 non-overlapping open reading frames (ORFs), equally distributed on both strands, which cover 65% of the genome. While most of the ORFs lacked threshold sequence alignments to reference protein databases, twenty-eight were found to display significant homologies with proteins present in other large double stranded DNA viruses. Remarkably, 13 ORFs had strong similarity with typical baculovirus domains such as PIFs (per os infectivity factor genes: pif-1, pif-2, pif-3 and p74) and BRO (Baculovirus Repeated Open Reading Frame). The putative AmFV DNA polymerase is of type B, but is only distantly related to those of the baculoviruses. The ORFs encoding proteins involved in nucleotide metabolism had the highest percent identity to viral proteins in GenBank. Other notable features include the presence of several collagen-like, chitin-binding, kinesin and pacifastin domains. Due to the large size of the AmFV genome and the inconsistent affiliation with other large double stranded DNA virus families infecting invertebrates, AmFV may belong to a new virus family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mouse mammary tumor virus (MMTV) contained six major proteins, identified as gp55, gp33, p25, pp20, p12, and p10. Immunoprecipitation of cytoplasmic extracts from MMTV-infected, pulse-labeled cells identified three MMTV core-specific precursor proteins, termed Pr78('gag), Pr110('gag), Pr110('gag), and Pr180('gag+). The major intracellular core-specific precursor polyprotein, Pr78('gag), contained antigenic determinants and tryptic peptides characteristic of p25, p12, and p10. Pr110('gag) contained all but one of the leucine-containing tryptic peptides of Pr78('gag), plus several additional peptides. In addition to Pr78('gag) and Pr110('gag), monospecific antisera to virion p12 and p25 also precipitated from pulse-labeled cells a small amount of Pr180('gag+). This large polyprotein contained nearly all of the leucine-containing tryptic peptides of Pr78('gag) and Pr110('gag) plus several additional peptides. By analogy to type-C viral systems, Pr180('gag+) is presumed to represent a gag-pol-specific common precursor which is the major translation product in the synthesis of MMTV RNA-dependent-DNA polymerase. Immunoprecipitation of cytoplasmic extracts from pulse-labeled cells with antisera to gp55 identified two envelope-specific proteins, designated gPr76('env) and gP79('env). The major envelope-specific precursor, gPr76('env), could be labeled with radioactive glucosamine and contained antigenic determinants and tryptic peptides characteristic of gp55 and gp33. A quantitatively minor glycoprotein, gP79('env), contained both fucose and glucosamine and was precipitable from cytoplasmic extracts with monospecific serum to gp55. It is suggested that gP79('env) represents fucosylated gPr76('env) which is transiently synthesized and cleaved rapidly into gp55 and gp33.^ A glycoprotein of 130,00 molecular weight (gP130) was precipitable from the cytoplasm of GR-strain mouse mammary tumor cells by a rabbit antiserum (anti-MMTV) to Gr-strain mouse mammary tumors virus (GR-MMTV). Two dimensional thin layer analysis of ('35)S-methionine-containing peptides revealed that five of nine gp33 peptides and one of seven gp55 peptides were shared by gP130 and gPr76('env). Six of ten p25 peptides and four more core-related peptides were shared by Pr78('gag) and gP130. Protein gP130 also contained several tryptic peptides not found in gPr76('env), or in the core protein precursors Pr78('gag), Pr110('gag), or Pr180('gag+). both gP130 and a second protein, p30, were found in immunoprecipitates of detergent disrupted, isotopically labeled GR-MMTV treated with anti-MMTV serum. Results suggest that antibodies to gP130 in the anti-MMTV serum are capable of recognizing those protein sequences which are not related to viral structural proteins. These gP130-unique peptides are evidently host specific. Polyproteins consisting of juxtaposed host- and virus-related protein tracts have been implicated in the process of cell transformation in other mammalian systems. Therefore, gP130 may be instrinsic to the oncogenic potential of MMTV. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four 8-azaguanine (AG)-resistant and 5-bromodeoxyuridine (BUdR)-resistant clones of a mouse mammary adenocarcinoma cell line, RIII 7387, were developed and analyzed for their tumorigenic properties, in vitro characteristics, and virus expression. These characteristics were analyzed for relationships of any of the cellular parameters and the ability of these lines to produce tumors in syngeneic animals.^ The results of this study demonstrated that the parental line consists of a heterogeneous population of cells. Doubling times, saturation densities, and 2-deoxy-D-glucose uptake varied between sublines. In addition, while all sublines were found to express both B-type and C-type viral antigenic markers, levels of the major B-type and C-type viral proteins varied in the subclones. The sublines also differed markedly in their response to the presence of dexamethasone, glutathione, and insulin in the tissue culture medium.^ Variations in retrovirus expression were convirmed by electron microscopy. Budding and extracellular virus particles were seen in the majority of the cell lines. Virus particles in one of the BUdR-resistant lines, BUD9, were found however, only in inclusions and vacuoles. The AG-resistant subline AGE11 was observed to be rich in intracytoplasmic A particles. The examination of these cell lines for the presence of retroviral RNA-dependent DNA polymerase (RT) activity revealed that some B-type RT activity could be found in the culture fluid of most of the cell lines but that little C-type RT activity could be found suggesting that the C-type virus particles expressed by these RIII clones contain a defective RT.^ Tumor clones also varied in their ability to form tumors in syngeneic RIII mice. Tumor incidence ranged from 50% to 100%. The majority of the tumors regressed within 30 days post infection.^ Statistical analysis indicated that while these clones varied in their characteristics, there was no correlation between the ability of these cell lines to form tumors in syngeneic mice and any of the other characteristics examined.^ These studies have confirmed and extended the growing evidence that tumors, regardless of their natural origin, consist of heterogeneous subpopulations of cells which may vary widely in their in vitro growth behavior, their antigenic expression, and their malignant properties. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased glycolysis and oxidative stress are common features of cancer cells. These metabolic alterations are associated with mitochondrial dysfunction and can be caused by mitochondrial DNA (mtDNA) mutations, oncogenic signals, loss of tumor suppressor, and tumor tissue hypoxia. It is well established that mitochondria play central roles in energy metabolism, maintenance of redox balance, and regulation of apoptosis. However, the biochemical and molecular mechanisms that maintain high glycolysis in cancer cells (the Warburg effect) with mitochondrial dysfunction and oxidative stress remain to be determined. The major goals of this study were to establish a unique experimental system in which the mitochondrial respiratory function can be regulated as desired, and to use this system to investigate the mechanistic link between mitochondrial dysfunction and the Warburg effect along with oxidative stress in cancer cells. To achieve these goals, I have established a tetracycline-inducible system in which a dominant negative form of mitochondrial DNA polymerase y (POLGdn) expression could be regulated by tetracycline; thus controlling mitochondrial respiratory function. Using this cell system, I demonstrated that POLGdn expression resulted in mitochondrial dysfunction through decreasing mtDNA content, depletion of mtDNA encoded mRNA and protein expression. This process was mediated by TFAM proteasome degradation. Mitochondrial dysfunction mediated by POLGdn expression led to a significant increase in cellular glycolysis and oxidative stress. Surprisingly, mitochondrial dysfunction also resulted in increased NAD(P)H oxidase (NOX) enzyme activity, which was shown to be essential for maintaining high glycolysis. Chemical Inhibition of NOX activity by diphenyliodonium (DPI) preferentially impacted the survival of mitochondrial defective cells. The colon cancer HCT116-/- cells that have lost transcriptional regulation of the mitochondrial assembling enzyme SCO2, leading to compromised mitochondrial respiratory function, were found to have increased NOX activity and were highly sensitive to DPI treatment. Ovarian epithelial cells with Ras transformation also exhibited an increase in NOX gene expression and NOX enzyme activity, rendering the cells sensitive to DPI inhibition especially under hypoxic condition. These data together suggest that NOX plays a novel role in maintaining high glycolysis in cancer cells with mitochondrial defects, and that NOX may be a potential target for cancer therapy. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Entre las técnicas moleculares, RAPD-PCR es una de las más rápidas y operativamente simple para la caracterización de cultivares. Sin embargo, la confiabilidad de sus resultados radica, en gran parte, en la optimización previa de variables que pueden afectar los patrones de amplificación. Se investigó la repetibilidad de patrones RAPD de olivo bajo diferentes condiciones experimentales. Entre ellas, la pureza del ADN, el tipo de Taq ADN-polimerasa, las concentraciones de Mg+2 y dNTPs, el uso de tejidos atacados por patógenos y el uso de diferentes termocicladores, modificaron los patrones de bandas. Por el contrario, pequeñas modificaciones de la temperatura de apareamiento de cebadores, la concentración del ADN molde y la edad de los tejidos vegetales de los cuales se aisló ADN, no afectaron los patrones amplificados.