940 resultados para Convex infinite programming
Resumo:
Classical planning has been notably successful in synthesizing finite plans to achieve states where propositional goals hold. In the last few years, classical planning has also been extended to incorporate temporally extended goals, expressed in temporal logics such as LTL, to impose restrictions on the state sequences generated by finite plans. In this work, we take the next step and consider the computation of infinite plans for achieving arbitrary LTL goals. We show that infinite plans can also be obtained efficiently by calling a classical planner once over a classical planning encoding that represents and extends the composition of the planningdomain and the B¨uchi automaton representingthe goal. This compilation scheme has been implemented and a number of experiments are reported.
Resumo:
The infinite slope method is widely used as the geotechnical component of geomorphic and landscape evolution models. Its assumption that shallow landslides are infinitely long (in a downslope direction) is usually considered valid for natural landslides on the basis that they are generally long relative to their depth. However, this is rarely justified, because the critical length/depth (L/H) ratio below which edge effects become important is unknown. We establish this critical L/H ratio by benchmarking infinite slope stability predictions against finite element predictions for a set of synthetic two-dimensional slopes, assuming that the difference between the predictions is due to error in the infinite slope method. We test the infinite slope method for six different L/H ratios to find the critical ratio at which its predictions fall within 5% of those from the finite element method. We repeat these tests for 5000 synthetic slopes with a range of failure plane depths, pore water pressures, friction angles, soil cohesions, soil unit weights and slope angles characteristic of natural slopes. We find that: (1) infinite slope stability predictions are consistently too conservative for small L/H ratios; (2) the predictions always converge to within 5% of the finite element benchmarks by a L/H ratio of 25 (i.e. the infinite slope assumption is reasonable for landslides 25 times longer than they are deep); but (3) they can converge at much lower ratios depending on slope properties, particularly for low cohesion soils. The implication for catchment scale stability models is that the infinite length assumption is reasonable if their grid resolution is coarse (e.g. >25?m). However, it may also be valid even at much finer grid resolutions (e.g. 1?m), because spatial organization in the predicted pore water pressure field reduces the probability of short landslides and minimizes the risk that predicted landslides will have L/H ratios less than 25. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Models incorporating more realistic models of customer behavior, as customers choosing froman offer set, have recently become popular in assortment optimization and revenue management.The dynamic program for these models is intractable and approximated by a deterministiclinear program called the CDLP which has an exponential number of columns. However, whenthe segment consideration sets overlap, the CDLP is difficult to solve. Column generationhas been proposed but finding an entering column has been shown to be NP-hard. In thispaper we propose a new approach called SDCP to solving CDLP based on segments and theirconsideration sets. SDCP is a relaxation of CDLP and hence forms a looser upper bound onthe dynamic program but coincides with CDLP for the case of non-overlapping segments. Ifthe number of elements in a consideration set for a segment is not very large (SDCP) can beapplied to any discrete-choice model of consumer behavior. We tighten the SDCP bound by(i) simulations, called the randomized concave programming (RCP) method, and (ii) by addingcuts to a recent compact formulation of the problem for a latent multinomial-choice model ofdemand (SBLP+). This latter approach turns out to be very effective, essentially obtainingCDLP value, and excellent revenue performance in simulations, even for overlapping segments.By formulating the problem as a separation problem, we give insight into why CDLP is easyfor the MNL with non-overlapping considerations sets and why generalizations of MNL posedifficulties. We perform numerical simulations to determine the revenue performance of all themethods on reference data sets in the literature.
Resumo:
The choice network revenue management model incorporates customer purchase behavioras a function of the offered products, and is the appropriate model for airline and hotel networkrevenue management, dynamic sales of bundles, and dynamic assortment optimization.The optimization problem is a stochastic dynamic program and is intractable. A certainty-equivalencerelaxation of the dynamic program, called the choice deterministic linear program(CDLP) is usually used to generate dyamic controls. Recently, a compact linear programmingformulation of this linear program was given for the multi-segment multinomial-logit (MNL)model of customer choice with non-overlapping consideration sets. Our objective is to obtaina tighter bound than this formulation while retaining the appealing properties of a compactlinear programming representation. To this end, it is natural to consider the affine relaxationof the dynamic program. We first show that the affine relaxation is NP-complete even for asingle-segment MNL model. Nevertheless, by analyzing the affine relaxation we derive a newcompact linear program that approximates the dynamic programming value function betterthan CDLP, provably between the CDLP value and the affine relaxation, and often comingclose to the latter in our numerical experiments. When the segment consideration sets overlap,we show that some strong equalities called product cuts developed for the CDLP remain validfor our new formulation. Finally we perform extensive numerical comparisons on the variousbounds to evaluate their performance.
Resumo:
We characterize the Walrasian allocations correspondence by means offour axioms: consistency, replica invariance, individual rationality andPareto optimality. It is shown that for any given class of exchange economiesany solution that satisfies the axioms is a selection from the Walrasianallocations with slack. Preferences are assumed to be smooth, but may besatiated and non--convex. A class of economies is defined as all economieswhose agents' preferences belong to an arbitrary family (finite or infinite)of types. The result can be modified to characterize equal budget Walrasianallocations with slack by replacing individual rationality with individualrationality from equal division. The results are valid also for classes ofeconomies in which core--Walras equivalence does not hold.
Resumo:
This paper introduces the approach of using Total Unduplicated Reach and Frequency analysis (TURF) to design a product line through a binary linear programming model. This improves the efficiency of the search for the solution to the problem compared to the algorithms that have been used to date. The results obtained through our exact algorithm are presented, and this method shows to be extremely efficient both in obtaining optimal solutions and in computing time for very large instances of the problem at hand. Furthermore, the proposed technique enables the model to be improved in order to overcome the main drawbacks presented by TURF analysis in practice.
Resumo:
We develop a mathematical programming approach for the classicalPSPACE - hard restless bandit problem in stochastic optimization.We introduce a hierarchy of n (where n is the number of bandits)increasingly stronger linear programming relaxations, the lastof which is exact and corresponds to the (exponential size)formulation of the problem as a Markov decision chain, while theother relaxations provide bounds and are efficiently computed. Wealso propose a priority-index heuristic scheduling policy fromthe solution to the first-order relaxation, where the indices aredefined in terms of optimal dual variables. In this way wepropose a policy and a suboptimality guarantee. We report resultsof computational experiments that suggest that the proposedheuristic policy is nearly optimal. Moreover, the second-orderrelaxation is found to provide strong bounds on the optimalvalue.
Resumo:
We address the problem of scheduling a multi-station multiclassqueueing network (MQNET) with server changeover times to minimizesteady-state mean job holding costs. We present new lower boundson the best achievable cost that emerge as the values ofmathematical programming problems (linear, semidefinite, andconvex) over relaxed formulations of the system's achievableperformance region. The constraints on achievable performancedefining these formulations are obtained by formulatingsystem's equilibrium relations. Our contributions include: (1) aflow conservation interpretation and closed formulae for theconstraints previously derived by the potential function method;(2) new work decomposition laws for MQNETs; (3) new constraints(linear, convex, and semidefinite) on the performance region offirst and second moments of queue lengths for MQNETs; (4) a fastbound for a MQNET with N customer classes computed in N steps; (5)two heuristic scheduling policies: a priority-index policy, anda policy extracted from the solution of a linear programmingrelaxation.
Resumo:
In alkaline lavas, the chemical zoning of megacrystals of spinel is due to the cationic exchange between the latter and the host lava. The application of Fick's law to cationic diffusion profiles allows to calculate the time these crystals have stayed in the lava. Those which are in a chemical equilibrium were in contact with the lava during 20 to 30 days, whereas megacrystals lacking this equilibrium were in contact only for 3 or 4 days. The duration of the rise of an ultrabasic nodule in the volcanic chimney was calculated by applying Stokes' law.
Resumo:
The aim of this project is to get used to another kind of programming. Since now, I used very complex programming languages to develop applications or even to program microcontrollers, but PicoCricket system is the evidence that we don’t need so complex development tools to get functional devices. PicoCricket system is the clear example of simple programming to make devices work the way we programmed it. There’s an easy but effective way to program small, devices just saying what we want them to do. We cannot do complex algorithms and mathematical operations but we can program them in a short time. Nowadays, the easier and faster we produce, the more we earn. So the tendency is to develop fast, cheap and easy, and PicoCricket system can do it.
Resumo:
In the 2006 Iowa General Assembly, House File 2797 called for a study on the status of afterschool arts programs and appropriated $5,000 for the study. In accordance with the legislation, the Iowa Arts Council, who received the charge, contracted with the Iowa Afterschool Alliance to form a Resource Group of out-of-school arts providers and experts to develop and oversee the study, review its results, and make recommendations for the expansion of arts programs that operate outside the normal school day. As a part of its charge in HF 2797, the Iowa Arts Council also documented a sampling of out-of-school arts programs statewide. Five are featured in this report.
Resumo:
We show that any cooperative TU game is the maximum of a finite collection of convex games. This max-convex decomposition can be refined by using convex games with non-negative dividends for all coalitions of at least two players. As a consequence of the above results we show that the class of modular games is a set of generators of the distributive lattice of all cooperative TU games. Finally, we characterize zero-monotonic games using a strong max-convex decomposition
Resumo:
We study under which conditions the core of a game involved in a convex decomposition of another game turns out to be a stable set of the decomposed game. Some applications and numerical examples, including the remarkable Lucas¿ five player game with a unique stable set different from the core, are reckoning and analyzed.