946 resultados para Components of wages
Resumo:
Performance, carcass, non-carcass and commercial cuts and components of Texel × Santa Inês crossbred lambs, managed in confinement and fed diets based on soybean oil, soybeans and a conventional diet, with or without the use of monensin (78 ppm dry matter basis) were evaluated. Thirty-six Texel × Santa Inês lambs (18 males and 18 females) were managed in intensive systems. Animals were slaughtered after 87 days of confinement, and performance, carcass characteristics, weight and percentages of carcass and non-carcass components were evaluated. The animals fed the control diet had heavier carcass and parts than animals fed soybean, while the oil diet did not differ from the controls in most parameters. The animals fed soybean showed lower intake kg dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF) and metabolizable energy (ME) compared with animals fed the control diet, increased ether extract (EE) intake in kg, % body weight (BW) and metabolic weight (MW) and did not differ from the soybean oil diet. Animals receiving monensin had lower DM intake, OM, CP, EE, NDF, gross energy (GE) regardless of the expression, % kg BW, or % PM, than the animals that did not receive the additive. Males produced better and had heavier cuts than the females; the latter deposited subcutaneous fat earlier. Animals that received oil or soybean showed greater body weight and small intestine percentage. Soybean oil intake did not improve performance, carcass weights or parts of Santa Ines × Texel lambs in confinement. Soybeans at 15% dry matter reduced energy intake and lamb performance. The use of monensin at 78 ppm on a dry matter basis is not recommended for lambs in confinement, especially if associated with oil or soybeans that may harm animal performance.
Resumo:
Synthacaine is a New Psychoactive Substance which is, due to its inherent psychoactive properties, reported to imitate the effects of cocaine and is therefore consequently branded as legal cocaine. The only analytical approach reported to date for the sensing of Synthacaine is mass spectrometry. In this paper, we explore and evaluate a range of potential analytical techniques for its quantification and potential use in the field screening Synthacaine using Raman spectroscopy, presumptive (colour) testing, High Performance Liquid Chromatography (HPLC) and electrochemistry. HPLC analysis of street samples reveals that Synthacaine comprises a mixture of methiopropamine (MPA) and 2-aminoindane (2-AI). Raman spectroscopy and presumptive (colour) tests, the Marquis, Mandelin, Simon's and Robadope test, are evaluated towards a potential in-the-field screening approach but are found to not be able to discriminate between the two when they are both present in the same sample, as is the case in the real street samples. We report for the first time a novel indirect electrochemical protocol for the sensing of MPA and 2-AI which is independently validated in street samples with HPLC. This novel electrochemical approach based upon one-shot disposable cost effective screen-printed graphite macroelectrodes holds potential for in-the-field screening for Synthacaine.
Resumo:
Genotoxicity data on commercial azo dyes and their components remain sparse, despite their widespread use. We have tested the mutagenicity of 2-cyano-4-nitroaniline (CNNA) and 2,6-dicyano-4-nitroaniline (CNCNNA), components of azo dyes such as Disperse Blue 165 and Disperse Red 73, in Ames test strains. Both compounds are extraordinarily potent frameshift mutagens, with much greater activity than structurally similar dihalonitroanilines and halodinitroanilines. Analysis of the responses of strains over-expressing or deficient in bioactivation enzymes shows that bacterial nitroreductase and acetyl CoA: arylamine N-acetyltransferase are important mediators of the mutagenicity of CNNA and CNCNNA. Environ. Mol. Mutagen., 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Transient visual evoked cortical potentials (VECP) were recorded from the scalp of healthy normal trichromats (n = 12). VECPs were elicited by onset/offset presentation of patterned stimuli of two kinds: isochromatic luminance-modulated, and equiluminant red-green modulated, sine wave gratings. The amplitude and latency of the major onset components of the onset/offset VECP were measured and plotted as a function of the logarithm of pooled cone contrast. The early onset components, achromatic C1 and chromatic N1, increase linearly with log contrast, but N1 has a higher contrast gain than C1. The late onset components, achromatic C2 and chromatic N2, have similar contrast gain, and similar response as a function of contrast level: both increase in the low-to-medium range of contrasts and saturate at high contrast levels. In the range of pooled cone contrast tested, C1 and N1 show similar latencies, whilst C2 shows shorter latencies than N2. We suggest that C1 and N1 are generated by the same visual mechanism with high red-green contrast gain and low luminance contrast gain, whilst C2 and N2 are generated by different visual mechanisms.
Resumo:
The effects of silicon (Si) supplied in the form of potassium silicate (PS) were evaluated on epidemic components of powdery mildew of melon under greenhouse conditions. The PS was applied to the roots or to leaves. In the first experiment, epidemic components were evaluated after inoculation with Podosphaera xanthii. In the second experiment, the disease progress rate was evaluated on plants subjected to natural infection. The area under the disease progress curve was reduced by 65% and 73% in the foliar and root treatments, respectively, compared to control plants, as a consequence of reductions in infection efficiency, colony expansion rate, colony area, conidial production and disease progress rate. However, root application of PS was more effective than foliar application in reducing most of the epidemic components, except for infection efficiency. This can be explained by the high Si concentration in leaf tissues with root application, in contrast to the foliar treatment where Si was only deposited on the external leaf surfaces. The effects of PS reported in this study demonstrated that powdery mildew of melon can be controlled, and that the best results can be achieved when PS is supplied to the roots.
Resumo:
Mangrove forests encompass a group of trees species that inhabit the intertidal zones, where soil is characterized by the high salinity and low availability of oxygen. The phyllosphere of these trees represent the habitat provided on the aboveground parts of plants, supporting in a global scale, a large and complex microbial community. The structure of phyllosphere communities reflects immigration, survival and growth of microbial colonizers, which is influenced by numerous environmental factors in addition to leaf physical and chemical properties. Here, a combination of culture-base methods with PCR-DGGE was applied to test whether local or plant specific factors shape the bacterial community of the phyllosphere from three plant species (Avicenia shaueriana, Laguncularia racemosa and Rhizophora mangle), found in two mangroves. The number of bacteria in the phyllosphere of these plants varied between 3.62 x 10(4) in A. schaeriana and 6.26 x 10(3) in R. mangle. The results obtained by PCR-DGGE and isolation approaches were congruent and demonstrated that each plant species harbor specific bacterial communities in their leaves surfaces. Moreover, the ordination of environmental factors (mangrove and plant species), by redundancy analysis (RDA), also indicated that the selection exerted by plant species is higher than mangrove location on bacterial communities at phyllosphere.
Resumo:
Objective: We sought to determine whether a reported history of childhood adversity is associated with components of the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP-III)-defined metabolic syndrome in adults with mood disorders. Method: This was a cross-sectional analysis of adult outpatients (N = 373; n = 230 female, n = 143 male; mean age [SD] = 42.86 [14.43]) from the International Mood Disorders Collaborative Project (University of Toronto and Cleveland Clinic) with DSM-IV-defined major depressive disorder and bipolar I/II disorder. Childhood adversity was measured with the Klein Trauma & Abuse-Neglect self-report scale. The groups with and without childhood adversity were compared to determine possible differences in the rates of metabolic syndrome and its components. Logistic and linear regressions adjusted for age, sex, education, employment status, and smoking were used to evaluate the association between childhood adversity and components of metabolic syndrome. Results: For the full sample, 83 subjects (22.25%) met criteria for metabolic syndrome. Individuals reporting a history of any childhood adversity had higher systolic and diastolic blood pressure (systolic: p = 0.040; diastolic: p = 0.038). Among subjects with a history of sexual abuse, a significant proportion met criteria for obesity (45.28% vs. 32.88%; p = 0.010); a trend toward overweight was found for subjects with a history of physical abuse (76.32% vs. 63.33%; p = 0.074), although this relationship did not remain significant after adjusting for potential confounders. There was no statistically significant difference in the overall rate of dyslipidemia and/or metabolic syndrome between subjects with and without childhood adversity. Conclusion: The results herein provide preliminary evidence suggesting that childhood adversity is associated with metabolic syndrome components in individuals with mood disorders. Int'l. J. Psychiatry in Medicine 2012;43:165-177)
Resumo:
Background: Balancing the subject composition of case and control groups to create homogenous ancestries between each group is essential for medical association studies. Methods: We explored the applicability of single-tube 34-plex ancestry informative markers (AIM) single nucleotide polymorphisms (SNPs) to estimate the African Component of Ancestry (ACA) to design a future case-control association study of a Brazilian urban sample. Results: One hundred eighty individuals (107 case group; 73 control group) self-described as white, brown-intermediate or black were selected. The proportions of the relative contribution of a variable number of ancestral population components were similar between case and control groups. Moreover, the case and control groups demonstrated similar distributions for ACA <0.25 and >0.50 categories. Notably a high number of outlier values (23 samples) were observed among individuals with ACA <0.25. These individuals presented a high probability of Native American and East Asian ancestral components; however, no individuals originally giving these self-described ancestries were observed in this study. Conclusions: The strategy proposed for the assessment of ancestry and adjustment of case and control groups for an association study is an important step for the proper construction of the study, particularly when subjects are taken from a complex urban population. This can be achieved using a straight forward multiplexed AIM-SNPs assay of highly discriminatory ancestry markers.
Resumo:
Nicotinamide adenine dinucleotide (NAD) is a ubiquitous cofactor participating in numerous redox reactions. It is also a substrate for regulatory modifications of proteins and nucleic acids via the addition of ADP-ribose moieties or removal of acyl groups by transfer to ADP-ribose. In this study, we use in-depth sequence, structure and genomic context analysis to uncover new enzymes and substrate-binding proteins in NAD-utilizing metabolic and macromolecular modification systems. We predict that Escherichia coli YbiA and related families of domains from diverse bacteria, eukaryotes, large DNA viruses and single strand RNA viruses are previously unrecognized components of NAD-utilizing pathways that probably operate on ADP-ribose derivatives. Using contextual analysis we show that some of these proteins potentially act in RNA repair, where NAD is used to remove 2'-3' cyclic phosphodiester linkages. Likewise, we predict that another family of YbiA-related enzymes is likely to comprise a novel NAD-dependent ADP-ribosylation system for proteins, in conjunction with a previously unrecognized ADP-ribosyltransferase. A similar ADP-ribosyltransferase is also coupled with MACRO or ADP-ribosylglycohydrolase domain proteins in other related systems, suggesting that all these novel systems are likely to comprise pairs of ADP-ribosylation and ribosylglycohydrolase enzymes analogous to the DraG-DraT system, and a novel group of bacterial polymorphic toxins. We present evidence that some of these coupled ADP-ribosyltransferases/ribosylglycohydrolases are likely to regulate certain restriction modification enzymes in bacteria. The ADP-ribosyltransferases found in these, the bacterial polymorphic toxin and host-directed toxin systems of bacteria such as Waddlia also throw light on the evolution of this fold and the origin of eukaryotic polyADP-ribosyltransferases and NEURL4-like ARTs, which might be involved in centrosomal assembly. We also infer a novel biosynthetic pathway that might be involved in the synthesis of a nicotinate-derived compound in conjunction with an asparagine synthetase and AMPylating peptide ligase. We use the data derived from this analysis to understand the origin and early evolutionary trajectories of key NAD-utilizing enzymes and present targets for future biochemical investigations.
Resumo:
Ehrlichia canis, etiologic agent of Canine Monocytic Ehrlichiosis, is an obligatory intracellular bacterium that parasitizes monocytes and macrophages. In this study we analyzed the role of the cytoskeleton specifically actin microfilaments and microtubules, components of inositol phospholipid signaling pathway such as phospholipase C (PLC), protein kinase (PTK) and calcium channels as well as the role of iron in the E. canis proliferation in DH82 cells. Different inhibitory compounds were used for each component: Cytochalasin D (inhibits actin polymerization), Nocodazole (inhibits microtubule polymerization), Neomycin (PLC inhibitor), Genistein (PTK inhibitor), Verapamil (calcium channel blocker) and Deferoxamine (iron chelator). We observed a significant decrease in the total number of bacteria in infected cells treated suggesting that these cellular components analized are essentials to E. canis proliferation.
Resumo:
Abstract Background The Vitamin D Receptor gene (VDR) is expressed in many tissues and modulates the expression of several other genes. The purpose of this study was to investigate the association between metabolic syndrome (MetSyn) with the presence of VDR 2228570 C > T and VDR 1544410 A > G polymorphisms in Brazilian adults. Methods Two hundred forty three (243) individuals were included in a cross-sectional study. MetSyn was classified using the criteria proposed by National Cholesterol Educational Program - Adult Treatment Panel III. Insulin resistance and β cell secretion were estimated by the mathematical models of HOMA IR and β, respectively. The VDR 2228570 C > T and VDR 1544410 A > G polymorphisms were detected by enzymatic digestion and confirmed by allele specific PCR or amplification of refractory mutation. Results Individuals with MetSyn and heterozygosis for VDR 2228570 C > T have higher concentrations of iPTH and HOMA β than those without this polymorphism, and subjects with recessive homozygosis for the same polymorphisms presented higher insulin resistance than those with the heterozygous genotype. There is no association among VDR 1544410 A > G and components of MetSyn, HOMA IR and β, serum vitamin D (25(OH)D3) and intact parathormone (iPTH) levels in patients with MetSyn. A significant lower concentration of 25(OH)D3 was observed only in individuals without MetSyn in the VDR 1544410 A > G genotype. Additionally, individuals without MetSyn and heterozygosis for VDR 2228570 C > T presented higher concentration of triglycerides and lower HDL than those without this polymorphism. Conclusions Using two common VDR polymorphism data suggests they may influence insulin secretion, insulin resistance an serum HDL-cholesterol in our highly heterogeneous population. Whether VDR polymorphism may influence the severity of MetSyn component disorder, warrants examination in larger cohorts used for genome-wide association studies.
Resumo:
Abstract Background Collybistin (CB), a neuron-specific guanine nucleotide exchange factor, has been implicated in targeting gephyrin-GABAA receptors clusters to inhibitory postsynaptic sites. However, little is known about additional CB partners and functions. Findings Here, we identified the p40 subunit of the eukaryotic translation initiation factor 3 (eIF3H) as a novel binding partner of CB, documenting the interaction in yeast, non-neuronal cell lines, and the brain. In addition, we demonstrated that gephyrin also interacts with eIF3H in non-neuronal cells and forms a complex with eIF3 in the brain. Conclusions Together, our results suggest, for the first time, that CB and gephyrin associate with the translation initiation machinery, and lend further support to the previous evidence that gephyrin may act as a regulator of synaptic protein synthesis.
Resumo:
Mangrove forests encompass a group of trees species that inhabit the intertidal zones, where soil is characterized by the high salinity and low availability of oxygen. The phyllosphere of these trees represent the habitat provided on the aboveground parts of plants, supporting in a global scale, a large and complex microbial community. The structure of phyllosphere communities reflects immigration, survival and growth of microbial colonizers, which is influenced by numerous environmental factors in addition to leaf physical and chemical properties. Here, a combination of culture-base methods with PCR-DGGE was applied to test whether local or plant specific factors shape the bacterial community of the phyllosphere from three plant species (Avicenia shaueriana, Laguncularia racemosa and Rhizophora mangle), found in two mangroves. The number of bacteria in the phyllosphere of these plants varied between 3.62 x 10(4) in A. schaeriana and 6.26 x 10³ in R. mangle. The results obtained by PCR-DGGE and isolation approaches were congruent and demonstrated that each plant species harbor specific bacterial communities in their leaves surfaces. Moreover, the ordination of environmental factors (mangrove and plant species), by redundancy analysis (RDA), also indicated that the selection exerted by plant species is higher than mangrove location on bacterial communities at phyllosphere.
Resumo:
The research performed during the PhD candidature was intended to evaluate the quality of white wines, as a function of the reduction in SO2 use during the first steps of the winemaking process. In order to investigate the mechanism and intensity of interactions occurring between lysozyme and the principal macro-components of musts and wines, a series of experiments on model wine solutions were undertaken, focusing attention on the polyphenols, SO2, oenological tannins, pectines, ethanol, and sugar components. In the second part of this research program, a series of conventional sulphite added vinifications were compared to vinifications in which sulphur dioxide was replaced by lysozyme and consequently define potential winemaking protocols suitable for the production of SO2-free wines. To reach the final goal, the technological performance of two selected yeast strains with a low aptitude to produce SO2 during fermentation were also evaluated. The data obtained suggested that the addition of lysozyme and oenological tannins during the alcoholic fermentation could represent a promising alternative to the use of sulphur dioxide and a reliable starting point for the production of SO2-free wines. The different vinification protocols studied influenced the composition of the volatile profile in wines at the end of the alcoholic fermentation, especially with regards to alcohols and ethyl esters also a consequence of the yeast’s response to the presence or absence of sulphites during fermentation, contributing in different ways to the sensory profiles of wines. In fact, the aminoacids analysis showed that lysozyme can affect the consumption of nitrogen as a function of the yeast strain used in fermentation. During the bottle storage, the evolution of volatile compounds is affected by the presence of SO2 and oenological tannins, confirming their positive role in scaveging oxygen and maintaining the amounts of esters over certain levels, avoiding a decline in the wine’s quality. Even though a natural decrease was found on phenolic profiles due to oxidation effects caused by the presence of oxygen dissolved in the medium during the storage period, the presence of SO2 together with tannins contrasted the decay of phenolic content at the end of the fermentation. Tannins also showed a central role in preserving the polyphenolic profile of wines during the storage period, confirming their antioxidant property, acting as reductants. Our study focused on the fundamental chemistry relevant to the oxidative phenolic spoilage of white wines has demonstrated the suitability of glutathione to inhibit the production of yellow xanthylium cation pigments generated from flavanols and glyoxylic acid at the concentration that it typically exists in wine. The ability of glutathione to bind glyoxylic acid rather than acetaldehyde may enable glutathione to be used as a ‘switch’ for glyoxylic acid-induced polymerisation mechanisms, as opposed to the equivalent acetaldehyde polymerisation, in processes such as microoxidation. Further research is required to assess the ability of glutathione to prevent xanthylium cation production during the in-situ production of glyoxylic acid and in the presence of sulphur dioxide.
Resumo:
Enhanced production of proinflammatory bradykinin-related peptides, the kinins, has been suggested to contribute to the pathogenesis of periodontitis, a common inflammatory disease of human gingival tissues. In this report, we describe a plausible mechanism of activation of the kinin-generating system, also known as the contact system or kininogen-kallikrein-kinin system, by the adsorption of its plasma-derived components such as high-molecular-mass kininogen (HK), prekallikrein (PK), and Hageman factor (FXII) to the cell surface of periodontal pathogen Porphyromonas gingivalis. The adsorption characteristics of mutant strains deficient in selected proteins of the cell envelope suggested that the surface-associated cysteine proteinases, gingipains, bearing hemagglutinin/adhesin domains (RgpA and Kgp) serve as the major platforms for HK and FXII adhesion. These interactions were confirmed by direct binding tests using microplate-immobilized gingipains and biotinylated contact factors. Other bacterial cell surface components such as fimbriae and lipopolysaccharide were also found to contribute to the binding of contact factors, particularly PK. Analysis of kinin release in plasma upon contact with P. gingivalis showed that the bacterial surface-dependent mechanism is complementary to the previously described kinin generation system dependent on HK and PK proteolytic activation by the gingipains. We also found that several P. gingivalis clinical isolates differed in the relative significance of these two mechanisms of kinin production. Taken together, these data show the importance of this specific type of bacterial surface-host homeostatic system interaction in periodontal infections.