966 resultados para Catalina
Resumo:
Novel data on the spatial and temporal distribution of fishing effort and population abundance are presented for the market squid fishery (Loligo opalescens) in the Southern California Bight, 1992−2000. Fishing effort was measured by the detection of boat lights by the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). Visual confirmation of fishing vessels by nocturnal aerial surveys indicated that lights detected by satellites are reliable indicators of fishing effort. Overall, fishing activity was concentrated off the following Channel Islands: Santa Rosa, Santa Cruz, Anacapa, and Santa Catalina. Fishing activity occurred at depths of 100 m or less. Landings, effort, and squid abundance (measured as landings per unit of effort, LPUE) markedly declined during the 1997−98 El Niño; landings and LPUE increased afterwards. Within a fishing season, the location of fishing activity shifted from the northern shores of Santa Rosa and Santa Cruz Islands in October, the typical starting date for squid fishing in the Bight, to the southern shores by March, the typical end of the squid season. Light detection by satellites offers a source of fine-scale spatial and temporal data on fishing effort for the market squid fishery off California, and these data can be integrated with environmental data and fishing logbook data in the development of a management plan.
Resumo:
The objective of this study was to analyze the association between candidate gene polymorphisms and susceptibility to acute respiratory distress syndrome (ARDS) in patients with severe sepsis. Patients older than 18 years admitted to the intensive care un
Resumo:
Documento de diez fotografías a color.
Resumo:
El trabajo parte de una inquietud que se centra en dos aspectos: el uso indistinto que los estudiantes dan a las letras para resolver ecuaciones, para hallar equivalencias algebraicas y para abordar situaciones de variación. Se involucra la función cuadrática como objeto matemático. Esto, al menos por dos razones: en primera instancia porque fue la temática en la cual venían trabajando los estudiantes al momento de realizar el proyecto, y en segundo lugar porque la función cuadrática puede y ha sido interpretada como modelo matemático de procesos de variación cuadrática (Mesa & Ochoa, 2009; Posada & otros, 2006). Analizan diferentes usos que dan los estudiantes a las letras en determinadas tareas.
Resumo:
Este taller estará dirigido a docentes de la educación básica y media y personas en general que estén interesados en conocer estrategias para la enseñanza del teorema de Pitágoras, en este se mostrarán algunos rompecabezas y se estudiaran, además se mostraran a través de una metodología llamada Aula Taller y finalmente se harán reflexiones alrededor de la enseñanza de la geometría en la escuela.
Resumo:
Arquímedes es el matemático y científico de todos los tiempos, desde la Antigüedad hasta nuestros días; en él se personifican variedad de métodos para resolver situaciones matemáticas y científicas, además de ideas fundamentales que han acompañado la evolución de muchos conceptos de las matemáticas y las ciencias; entre ellas están las ideas sobre el cálculo integral, la geometría de los cuerpos redondos, la cuadratura de la parábola, la conceptualización sobre espejos y poleas, la palanca y las ideas sobre flotación de los cuerpos, a través de la experimentación. Es por ello que, siguiendo algunas de sus rutas, se desarrollará el taller “Algunas ideas matemáticas y físicas de Arquímedes”, mostrando a través de algunas de estas experiencias desarrollos metodológicos, e integración de ideas de las matemáticas con otras áreas del conocimiento científico. Además, estos métodos permiten desarrollar ideas, que pueden ser aplicadas en procesos de aprendizaje de algunos conceptos de las matemáticas, que son enseñados en la Educación Básica y Media de nuestros jóvenes. Asimismo, en este taller mostraremos algunos senderos de aprendizaje de las matemáticas, integrados a las ciencias naturales, siguiendo algunos métodos arquimedianos, en ambientes de la metodología de Aula Taller, donde el aprender haciendo, el uso de material tangible, el apoyo en guías de trabajo, el construir las ideas y los conceptos son, es la clave el conocimiento. Esto lo compartiremos con los maestros a través del estudio de los cuerpos redondos y las ideas de flotación de los cuerpos. Cabe aclarar, además que, ni la metodología ni el tema a trabajar han sido explorados en nuestro país. Es por ello que queremos compartirlo, ya que es una experiencia que hemos vivido en otros espacios y que ha tenido un buen resultado.
Resumo:
En este trabajo se reportan resultados de investigaciones sobre el concepto de límite, particularmente aquellas centradas en el aspecto cognitivo, y estos, tanto en el nivel medio superior como en el nivel superior. Estas investigaciones las clasificamos en tres grupos: las que tratan el preconcepto de límite, sobre las concepciones que se tienen del concepto de límite y las que reportan dificultades al tratamiento del concepto de límite. Algunos de los resultados de estas investigaciones es que el preconcepto está asociado a “una barrera no rebasable”; en cuanto a las concepciones sobre el concepto están las que se relacionan con “valor inalcanzable”, “como aproximación”, entre otras; y algunas dificultades como al redactar la definición del límite.
Resumo:
En el presente escrito, se reportan los resultados de un trabajo de investigación a nivel licenciatura, el cual se centró en el estudio de comportamientos gráficos en funciones algebraicas y trigonométricas, específicamente en f(x)=x , f(x)=x^2 ,f(x)=x^3 , f(x)=sen(x) y f(x)=cos(x), así como las transformaciones de cada una, considerando la expresión Y=Cf(ax+c)+D, con la intención de realizar comparaciones gráficas entre las funciones originales y las transformadas, el propósito general fue analizar si la presentación de funciones algebraicas y trigonométricas en diversos contextos (algebraico, visual, numérico y gráfico), permite al estudiante identificar comportamientos análogos y relacionar éstos con transformaciones gráficas. De acuerdo a los resultados obtenidos, concluimos que el estudiante al producir sus propias gráficas, éste logra identificar por si mismo comportamientos análogos entre las gráficas algebraicas y trigonométricas, además, el uso de diferentes registros de representación coadyuva al desarrollo de dichos resultados.
Resumo:
Uno de los problemas centrales que se presentan, para abordar el tema de límite, es sin duda cuando nos enfrentamos al concepto de infinito. Generalmente el docente al enseñar el concepto de infinito utiliza metáforas didácticas basadas en conjuntos muy grandes, esto para fijar la idea de infinitud. De acuerdo con la real academia española, esto permite crear la noción de infinito en un lenguaje cotidiano, lo que lleva a generar una mala formación de este concepto, dentro de un lenguaje matemático, ya que la imprecisión del lenguaje cotidiano hace ver al concepto de infinito muy vago y se aleja de la idea matemática como unidad total (Ortiz, 1994). El interés de nuestro trabajo se centra precisamente en el diseño de actividades, donde el estudiante pueda realizar y observar un proceso infinito, a través de ejemplos geométricos donde se presente la situación límite (proceso infinito culminado), permitiendo la formación del concepto de límite.
Resumo:
Se presenta una experiencia de investigación-acción colaborativa en fase de desarrollo que parte de la preocupación del profesorado de un colegio de Educación Primaria por mejorar su metodología en lo relativo al desarrollo del pensamiento numérico. El centro, que está ubicado en un barrio con alto riesgo de exclusión social, inició su transformación en Comunidad de Aprendizaje hace tres años. A grandes rasgos, la apuesta metodológica se basa en el aprendizaje significativo del Sistema de Numeración Decimal de la mano de unos materiales manipulativos concretos y la utilización de los denominados algoritmos Abiertos Basados en Números (ABN) para el cálculo. El proyecto, en el que participan los maestros y maestras del centro, profesorado de Didáctica de las Matemáticas, asesores de formación y alumnado universitario, pone en acción iniciativas de formación del profesorado, innovación en el aula e investigación educativa.
Resumo:
El objetivo de este estudio es determinar las dificultades que estudiantes de cuarto de ESO, de bachillerato y del Máster de Profesor de Educación Secundaria de la especialidad de Matemáticas tienen con la operatoria y el orden, cuando realizan cálculos con números decimales periódicos. El trabajo se sustenta en un estudio de Rittaud y Vivier, del cual se hace una réplica de una parte de su cuestionario que utilizamos para la toma de datos. El análisis de las respuestas de los estudiantes permite identificar errores y carencias en la enseñanza, conducentes a un esquema de clasificación e interpretación de las actuaciones de los estudiantes.
Resumo:
Presentamos resultados relativos a la equivalencia matemática y fenomenológica de la definición de límite finito de una sucesión y la definición de sucesión de Cauchy. Para ello enunciamos dos criterios que permiten determinar cuando dos fenómenos son equivalentes y cuando lo son dos definiciones, desde un punto de vista fenomenológico. A continuación y usando estos resultados realizamos avances significativos para demostrar en un futuro próximo que la definición de límite finito de una función en el infinito y la condición de Bolzano-Cauchy, además de ser equivalentes matemáticamente también lo son fenomenológicamente. Para ello enunciamos los fenómenos organizados por la definición de Bolzano-Cauchy que convenimos en llamarla definición de función de Cauchy.
Resumo:
En este documento indagamos sobre algunos aspectos del conocimiento didáctico que un grupo de maestros de primaria en formación inicial ponen en juego al redactar un texto cuyo propósito es iniciar a los escolares de primaria en la noción de fracción. Usamos algunas de las categorías del análisis didáctico para analizar las producciones de los futuros maestros. Los resultados destacan los conocimientos que los participantes seleccionan, como el concepto de numerador y denominador, la suma y resta de fracciones o el concepto de unidad, y el modo en que los introducen en sus propuestas.
Resumo:
Se estudia el proceso que va desde las acciones reales y efectivas de añadir y quitar hasta la construcción de las operaciones aritméticas de suma y resta por parte de los escolares de 3, 4 y 5 años. El esquema lógico-matemático subyacente es el de transformaciones. Para que se den estas operaciones deben presentarse simultáneamente dicho esquema y la cuantificación, siendo esa simultaneidad la que lleva a las relaciones numéricas. Teniendo en cuenta que el origen de las operaciones de suma y resta en el escolar está supeditado a las acciones de añadir y quitar que se desarrollan en un proceso de construcción mental de los esquemas lógicos-matemáticos de transformaciones de cantidades discretas, se propone un plan de actuación en el aula de educación infantil mediante un tratamiento sistemático de dichas operaciones.
Resumo:
En la investigación conducente a una tesis doctoral, estudiamos cómo reflexionan sobre su enseñanza, profesores de matemáticas, mientras participan en un curso de formación. La reflexión comienza seleccionando un problema profesional. Una de las parejas de profesores se planteó profundizar en las dificultades que tienen los alumnos para traducir enunciados a expresiones algebraicas (que los profesores llaman modelización). Para poder interpretar la reflexión hemos realizado un análisis didáctico de la enseñanza del álgebra en el inicio de secundaria. En esta comunicación presentamos algunas apreciaciones sobre el papel de la modelización en álgebra y su relación con los diferentes “roles de las letras en álgebra”, que nos servirán para interpretar los planteamientos y reflexiones de los profesores.