815 resultados para Body Weight and Measurements
Resumo:
Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 x 10(-8)): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.
Resumo:
Genome-wide association studies (GWAS) have identified more than 100 genetic variants contributing to BMI, a measure of body size, or waist-to-hip ratio (adjusted for BMI, WHRadjBMI), a measure of body shape. Body size and shape change as people grow older and these changes differ substantially between men and women. To systematically screen for age- and/or sex-specific effects of genetic variants on BMI and WHRadjBMI, we performed meta-analyses of 114 studies (up to 320,485 individuals of European descent) with genome-wide chip and/or Metabochip data by the Genetic Investigation of Anthropometric Traits (GIANT) Consortium. Each study tested the association of up to ~2.8M SNPs with BMI and WHRadjBMI in four strata (men ≤50y, men >50y, women ≤50y, women >50y) and summary statistics were combined in stratum-specific meta-analyses. We then screened for variants that showed age-specific effects (G x AGE), sex-specific effects (G x SEX) or age-specific effects that differed between men and women (G x AGE x SEX). For BMI, we identified 15 loci (11 previously established for main effects, four novel) that showed significant (FDR<5%) age-specific effects, of which 11 had larger effects in younger (<50y) than in older adults (≥50y). No sex-dependent effects were identified for BMI. For WHRadjBMI, we identified 44 loci (27 previously established for main effects, 17 novel) with sex-specific effects, of which 28 showed larger effects in women than in men, five showed larger effects in men than in women, and 11 showed opposite effects between sexes. No age-dependent effects were identified for WHRadjBMI. This is the first genome-wide interaction meta-analysis to report convincing evidence of age-dependent genetic effects on BMI. In addition, we confirm the sex-specificity of genetic effects on WHRadjBMI. These results may provide further insights into the biology that underlies weight change with age or the sexually dimorphism of body shape.
Resumo:
BACKGROUND & AIMS: The standard liver volume (SLV) is widely used in liver surgery, especially for living donor liver transplantation (LDLT). All the reported formulas for SLV use body surface area or body weight, which can be influenced strongly by the general condition of the patient. METHODS: We analyzed the liver volumes of 180 Japanese donor candidates and 160 Swiss patients with normal livers to develop a new formula. The dataset was randomly divided into two subsets, the test and validation sample, stratified by race. The new formula was validated using 50 LDLT recipients. RESULTS: Without using body weight-related variables, age, thoracic width measured using computed tomography, and race independently predicted the total liver volume (TLV). A new formula: 203.3-(3.61×age)+(58.7×thoracic width)-(463.7×race [1=Asian, 0=Caucasian]), most accurately predicted the TLV in the validation dataset as compared with any other formulas. The graft volume for LDLT was correlated with the postoperative prothrombin time, and the graft volume/SLV ratio calculated using the new formula was significantly better correlated with the postoperative prothrombin time than the graft volume/SLV ratio calculated using the other formulas or the graft volume/body weight ratio. CONCLUSIONS: The new formula derived using the age, thoracic width and race predicted both the TLV in the healthy patient group and the SLV in LDLT recipients more accurately than any other previously reported formulas.
Resumo:
The present study deals with a species of enteropneust, Glossobalanus crozieri, focusing on two aspects of its respiration: a) oxygen consumption and body mass, and b) the influence of environmental oxygen tension on the respiratory rate. Preliminarily, the body water content was shown to be 85% of the whole body weight. The regression coefficient of the oxygen consumption on the wet body mass (0.578) seems to agree with the view that in enteropneusts respiration is mainly cutaneous. The respiratory rate was significantly reduced at O2 tensions from 76 mmHg downwards, suggesting conformity rather than regulation
Resumo:
Our objective was to compare the use of calories from ethanol by well-nourished and malnourished rats in terms of body weight. Female Wistar rats weighing 170-180 g at the beginning of the study were used. The animals were divided into two groups (N = 12 each): group W received water ad libitum and group E an ethanol solution ad libitum as the only source of liquid throughout the experiment. The concentration of ethanol was increased weekly from 0 to 5, 10, 20 and 40% (v/v). In the well-nourished phase (A), all rats received food ad libitum (AW and AE). Ethanol treatment (AE) was then interrupted and water was offered to both groups. After 2 weeks both AW and AE rats were submitted to food restriction (50% of group AW food consumption), thus initiating the malnutrition phase (M). Liquid was offered as described before to the same W (MW) and E (ME) groups. The weight gain during the 1-week treatment of AE rats was similar to that of AW animals only when AE rats received the 5% (v/v) ethanol solution (9.16 vs 10.47 g). Weight loss was observed after exposure to 10% ethanol (P < 0.05) in spite of maintenance of caloric intake. Malnourished rats presented weight loss, which was attenuated by ethanol intake up to the 20% (v/v) solution and was related to an increased caloric offer. This effect was not observed with the 40% ethanol solution (-9.98 g). These data suggest that calories from ethanol were used to maintain body weight up to the concentration of 10% (v/v) (well-nourished) and 20% (v/v) (malnourished) and that ethanol has a toxic profile which depends on nutritional status.
Resumo:
Vitamin D deficiency, observed mainly in the geriatric population, is responsible for loss of bone mass and increased risk of bone fractures. Currently, recommended doses of cholecalciferol are advised, but since there are few studies evaluating the factors that influence the serum levels of 25-hydroxyvitamin D (25(OH)D) following supplementation, we analyzed the relationship between the increase in serum 25(OH)D after supplementation and body fat. We studied a group of 42 homebound elderly subjects over 65 years old (31 women) in order to assess whether there is a need for adjustment of the doses of cholecalciferol administered to this group according to their adipose mass. Baseline measurements of 25(OH)D, intact parathyroid hormone and bone remodeling markers (osteocalcin and carboxy-terminal fraction of type 1 collagen) were performed. Percent body fat was measured by dual-energy X-ray absorptiometry. The patients were divided into three groups according to their percent body fat index and were treated with cholecalciferol, 7,000 IU a week, for 12 weeks. The increases in serum levels of 25(OH)D were similar for all groups, averaging 7.46 ng/mL (P < 0.05). It is noteworthy that this increase only shifted these patients from the insufficiency category to hypovitaminosis. Peak levels of 25(OH)D were attained after only 6 weeks of treatment. This study demonstrated that adipose tissue mass does not influence the elevation of 25(OH)D levels following vitamin D supplementation, suggesting that there is no need to adjust vitamin D dose according to body fat in elderly homebound individuals.
Resumo:
In the late 1980's child malnutrition was still prevalent in Brazil, and child obesity was beginning to rise in the richest regions of the country. To assess the extent of the nutritional transition during the period and the influence of birth weight and maternal smoking on the nutritional condition of schoolchildren, we estimated the prevalence of excess weight and malnutrition in a cohort of Brazilian schoolchildren from 1987 to 1989. We calculated the body mass index (BMI) of 8- to 10-year-old schoolchildren born in Ribeirão Preto in 1978/79. We considered children with a BMI <5th percentile (P5) to be malnourished, children with P5³BMI
Resumo:
Dietary fat composition can interfere in the development of obesity due to the specific roles of some fatty acids that have different metabolic activities, which can alter both fat oxidation and deposition rates, resulting in changes in body weight and/or composition. High-fat diets in general are associated with hyperphagia, but the type of dietary fat seems to be more important since saturated fats are linked to a positive fat balance and omental adipose tissue accumulation when compared to other types of fat, while polyunsaturated fats, omega-3 and omega-6, seem to increase energy expenditure and decrease energy intake by specific mechanisms involving hormone-sensitive lipase, activation of peroxisome proliferator-activated receptor α (PPARα) and others. Saturated fat intake can also impair insulin sensitivity compared to omega-3 fat, which has the opposite effect due to alterations in cell membranes. Obesity is also associated with impaired mitochondrial function. Fat excess favors the production of malonyl-CoA, which reduces GLUT4 efficiency. The tricarboxylic acid cycle and beta-oxidation are temporarily uncoupled, forming metabolite byproducts that augment reactive oxygen species production. Exercise can restore mitochondrial function and insulin sensitivity, which may be crucial for a better prognosis in treating or preventing obesity.
Resumo:
The relationship of body weight (BW) with white adipose tissue (WAT) mass and WAT gene expression pattern was investigated in mice submitted to physical training (PT). Adult male C57BL/6 mice were submitted to two 1.5-h daily swimming sessions (T, N = 18), 5 days/week for 4 weeks or maintained sedentary (S, N = 15). Citrate synthase activity increased significantly in the T group (P < 0.05). S mice had a substantial weight gain compared to T mice (4.06 ± 0.43 vs 0.38 ± 0.28 g, P < 0.01). WAT mass, adipocyte size, and the weights of gastrocnemius and soleus muscles, lung, kidney, and adrenal gland were not different. Liver and heart were larger and the spleen was smaller in T compared to S mice (P < 0.05). Food intake was higher in T than S mice (4.7 ± 0.2 vs 4.0 ± 0.3 g/animal, P < 0.05) but oxygen consumption at rest did not differ between groups. T animals showed higher serum leptin concentration compared to S animals (6.37 ± 0.5 vs 3.11 ± 0.12 ng/mL). WAT gene expression pattern obtained by transcription factor adipocyte determination and differentiation-dependent factor 1, fatty acid synthase, malic enzyme, hormone-sensitive lipase, adipocyte lipid binding protein, leptin, and adiponectin did not differ significantly between groups. Collectively, our results showed that PT prevents BW gain and maintains WAT mass due to an increase in food intake and unchanged resting metabolic rate. These responses are closely related to unchanged WAT gene expression patterns.
Resumo:
Genetic, Prenatal and Postnatal Determinants of Weight Gain and Obesity in Young Children – The STEPS Study University of Turku, Faculty of Medicine, Department of Paediatrics, University of Turku Doctoral Program of Clinical Investigation (CLIPD), Turku Institute for Child and Youth Research. Conditions of being overweight and obese in childhood are common health problems with longlasting effects into adulthood. Currently 22% of Finnish boys and 12% of Finnish girls are overweight and 4% of Finnish boys and 2% of Finnish girls are obese. The foundation for later health is formed early, even before birth, and the importance of prenatal growth on later health outcomes is widely acknowledged. When the mother is overweight, had high gestational weight gain and disturbances in glucose metabolism during pregnancy, an increased risk of obesity in children is present. On the other hand, breastfeeding and later introduction of complementary foods are associated with a decreased obesity risk. In addition to these, many genetic and environmental factors have an effect on obesity risk, but the clustering of these factors is not extensively studied. The main objective of this thesis was to provide comprehensive information on prenatal and early postnatal factors associated with weight gain and obesity in infancy up to two years of age. The study was part of the STEPS Study (Steps to Healthy Development), which is a follow-up study consisting of 1797 families. This thesis focused on children up to 24 months of age. Altogether 26% of boys and 17% of girls were overweight and 5% of boys and 4% of girls were obese at 24 months of age according to New Finnish Growth references for Children BMI-for-age criteria. Compared to children who remained normal weight, the children who became overweight or obese showed different growth trajectories already at 13 months of age. The mother being overweight had an impact on children’s birth weight and early growth from birth to 24 months of age. The mean duration of breastfeeding was almost 2 months shorter in overweight women in comparison to normal weight women. A longer duration of breastfeeding was protective against excessive weight gain, high BMI, high body weight and high weight-for-length SDS during the first 24 months of life. Breast milk fatty acid composition differed between overweight and normal weight mothers, and overweight women had more saturated fatty acids and less n-3 fatty acids in breast milk. Overweight women also introduced complementary foods to their infants earlier than normal weight mothers. Genetic risk score calculated from 83 obesogenic- and adiposity-related single nucleotide polymorphisms (SNPs) showed that infants with a high genetic risk for being overweight and obese were heavier at 13 months and 24 months of age than infants with a low genetic risk, thus possibly predisposing to later obesity in obesogenic environment. Obesity Risk Score showed that children with highest number of risk factors had almost 6-fold risk of being overweight and obese at 24 months compared to children with lowest number of risk factors. The accuracy of the Obesity Risk Score in predicting overweight and obesity at 24 months was 82%. This study showed that many of the obesogenic risk factors tend to cluster within children and families and that children who later became overweight or obese show different growth trajectories already at a young age. These results highlight the importance of early detection of children with higher obesity risk as well as the importance of prevention measures focused on parents. Keywords: Breastfeeding, Child, Complementary Feeding, Genes, Glucose metabolism, Growth, Infant Nutrition Physiology, Nutrition, Obesity, Overweight, Programming
Resumo:
The objective of this study was to examine the association between body
composition and arterial stiffuess in peri-pubescent boys and girls. Differences in arterial
distensibility were measured in 68 children (45 normal weight, 12 overweight, and 11
obese) between the ages of9 to 12 years. Weight classification was based on age and
gender-specific body mass index cut-offs, while pubertal maturation was self-reported
using Tanner staging. Distensibility was determined using two-dimensional, B-Mode
echo Doppler ultrasound to measure changes at the right common carotid artery (CCA)
diameter changes, while carotid pulse pressure (cPP) was measured at the left CCA by
applanation tonometry. One-way ANOV A analysis revealed significant differences
(p<0.001) in all anthropometric measures between the normal weight and overweight
children, as well as the normal weight and obese children. Body stature was only higher
in obese children compared to normal weight children (p<0.01). No significant
differences were found between groups regarding age or Tanner stage. Common carotid
artery distensibility showed a significant difference (p<0.01) between normal weight
children (0.008 ± 0.002 mmHg-1
) compared to obese children (0.005 ± 0.002 mmHg-1
),
with a borderline significant difference between the normal and overweight subjects
(p=0.06). There was no significant effect for gender between males and females across
all independent variables. The strongest determinants of distensibility in children were
cPP (r= -0.52, p
Resumo:
This study attempted to manipulate self-presentational efficacy to examine the effect on social anxiety, social physique anxiety, drive for muscularity, and maximal strength performance during a one-repetition maximum (1-RM) chest press and leg press test. Ninety-nine college men with a minimum of six months of previous weight training experience were randomly assigned to complete a 1-RM protocol with either a muscular male trainer described as an expert or a lean male trainer described as a novice. Participants completed measures of self-presentation and body image prior to meeting their respective trainer, and following the completion of the 1-RM tests. Although the self-presentational efficacy manipulation was not successful, the trainers were perceived significantly differently on musculature and expertise. The group with the muscular, expert trainer reported higher social anxiety and attained higher 1-RM scores for the chest and leg press. Thus, trainer characteristics can affect strength performance and self-presentational concerns in this population.
Resumo:
Background: Leptin is produced predominantly by white adipocytes; in adults it regulates appetite and energy expenditure but its role in the neonate remains to be fully established. Objectives: To examine the effects of acute administration of recombinant human leptin on the endocrine profile and thermoregulation of neonatal pigs. Methods: 24 pairs of siblings (n = 48) were administered with either a single dose (4 mu g ml(-1) kg(-1) body weight) of leptin (L: n = 24) or a placebo (P: n = 24) on day 6 of neonatal life. Rectal temperature was recorded, and tissue samples were taken at 1 (n = 12), 2 (n = 12), 4 (n = 12) or 6 (n = 12) hours post-administration. Plasma concentrations of hormones and metabolites were determined in conjunction with messenger RNA (mRNA) for leptin and uncoupling protein-2. Results: Plasma leptin increased following leptin administration, and differences in concentrations of insulin, thyroxine and non-esterified fatty acids were observed between the two groups. Initially, rectal temperature decreased in L pigs but returned to start values by 1.5 h. This decline in rectal temperature was delayed in placebo animals, resulting in differences between treatments at 1.5 and 2 h. Conclusions: Acute leptin administration alters the endocrine profile of pigs and influences the thermoregulatory ability of the neonate. Copyright (C) 2007 S. Karger AG, Basel.
Resumo:
1. Nicotine has been implicated as a causative factor in the intrauterine growth retardation associated with smoking in pregnancy. A study was set up to ascertain the effect of nicotine on fetal growth and whether this could be related to the actions of this drug on maternal adipose tissue metabolism. 2. Sprague-Dawley rats were mated and assigned to control and nicotine groups, the latter receiving nicotine in the drinking-water throughout pregnancy. Animals were weighed at regular intervals and killed on day 20 of pregnancy. Rates of maternal adipose tissue lipolysis and lipogenesis were measured. Fetal and placental weights were recorded and analysis of fetal body water, fat, protein and DNA carried out. 3. Weight gains of mothers in the nicotine group were less in the 1st and 2nd weeks of pregnancy, but similar to controls in the 3rd week. Fetal body-weights, DNA, protein and percentage water contents were similar in both groups. Mean fetal body fat (g/kg) was significantly higher in the nicotine group (96.2 (SE 5.1)) compared with controls (72.0 (SE 2.9)). Rates of maternal lipolysis were also higher in the nicotine group. 4. The cause of these differences and their effects on maternal and fetal well-being is discussed.
Resumo:
Common variants at only two loci, FTO and MC4R, have been reproducibly associated with body mass index (BMI) in humans. To identify additional loci, we conducted meta-analysis of 15 genome-wide association studies for BMI (n > 32,000) and followed up top signals in 14 additional cohorts (n > 59,000). We strongly confirm FTO and MC4R and identify six additional loci (P < 5 x 10(-8)): TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2 and NEGR1 (where a 45-kb deletion polymorphism is a candidate causal variant). Several of the likely causal genes are highly expressed or known to act in the central nervous system (CNS), emphasizing, as in rare monogenic forms of obesity, the role of the CNS in predisposition to obesity.