917 resultados para Biodiesel production
Resumo:
Biodiesel é um biocombustível que consiste na mistura de ésteres monoalquílicos de ácidos graxos de cadeia longa. O processo usual de produção deste combustível é a transesterificação de óleos vegetais com álcoois de cadeia curta. Nesse processo, a matéria prima deve conter baixo conteúdo de ácido graxos livres ( ≤ 1%) e água (≤ 0,5%). Como alternativa ao processo de transesterificação, destaca-se o emprego de matérias-primas de baixo custo, com elevado teor de ácidos graxos livres, para a síntese de ésteres alquílicos através de reações de esterificação. As reações de produção do biodiesel podem ser catalisadas por via química (ácida e básica) ou enzimática. Na catálise enzimática, os biocatalisadores empregados são as lipases, que catalisam a hidrólise e síntese de ésteres e podem ser obtidas a partir de microrganismos, plantas ou tecido animal, sendo as de origem microbiana as mais utilizadas. O objetivo principal deste trabalho foi avaliar o potencial da lipase de Yarrowia lipolytica, uma levedura não convencional, na síntese de ésteres do ácido oleico visando à obtenção de ésteres alquílicos (biodiesel). Foram estudados os efeitos da temperatura (25, 30, 35, 40, 50 e 60oC), do teor enzimático (5, 10, 20, 30 e 40% v/v) e do tipo de álcool (metanol, etanol, n-propanol e n-butanol ) nas reações de esterificação do ácido oleico empregando o extrato enzimático líquido produzido por Yarrowia lipolytica. Os resultados obtidos mostraram que as reações conduzidas a 30oC e com 10% v/v do extrato enzimático apresentaram maior taxa inicial de reação. Também foi avaliada a utilização do extrato enzimático liofilizado (5% m/v) e do PES (produto enzimático sólido) (5% m/v) de Yarrowia lipolytica na reação de esterificação do ácido oleico com n-butanol a 30oC. O maior consumo de ácido oleico ocorreu na reação conduzida com o PES. O efeito da temperatura (25, 30, 35, 40 e 50oC) na síntese de oleato de butila foi, então, investigado nas reações empregando PES como biocatalisador e a maior conversão de ácido oleico foi verificada na temperatura de 40oC
Resumo:
A presente tese de doutorado teve como objetivo estabelecer parâmetros para avaliar a viabilidade do reúso agrícola de águas oleosas da indústria de petróleo, como as águas de produção (AP) de campos de exploração onshore do semiárido nordestino, na irrigação de culturas de girassol destinadas à produção de biodiesel. A AP foi produzida sinteticamente e tratada utilizando-se as técnicas de eletrofloculação (EF) e de osmose inversa (OI). Foram analisados os efeitos da AP não tratada, tratada por EF e por EF combinada com osmose inversa (EF+OI) na germinação, desenvolvimento e produção de biomassa de plântulas de girassol e também nos atributos de um solo característico do semiárido nordestino. Na melhor condição operacional do tratamento da AP por EF (28,6 A m-2 durante 4 min.) foram obtidas eficiências de remoção de óleos e graxas (O&G), demanda química de oxigênio (DQO), cor e turbidez superiores a 95%. O tratamento EF+OI promoveu a remoção do excesso de salinidade e de ferro oriundo da etapa de EF, enquadrando-se esses parâmetros dentro de níveis de referência recomendados para água de irrigação. Níveis de O&G e DQO superiores, respectivamente, a 337 mg L-1 e 1.321 mg O2 L-1 na AP bruta produziram efeitos tóxicos, reduzindo-se o índice de velocidade de germinação (IVG) e o percentual de plântulas normais do girassol. Por outro lado, os efluentes tratados por EF e EF+OI produziram efeitos similares no percentual de sementes germinadas, no IVG, no percentual de plântulas normais e na produção de biomassa do girassol. O uso da AP tratada por EF, com ou sem diluição, contribuiu significativamente para o aumento da salinidade e dos teores de sódio do solo, diferentemente da tratada por EF+OI, que produziu efeitos similares ao do controle (água destilada)
Resumo:
酸化油是油脂工业中以皂脚、油脚经酸化处理得到的产品。它的主要成分是游离脂肪酸及中性油,是生产脂肪酸的重要原料,但生产过程中有水解废水的产生,若将其直接排放,既污染了环境又浪费了资源。生物柴油的主要成分是脂肪酸甲酯(fatty acid methyl ester,FAME)。它具有原料丰富而且可再生、可生物降解、无毒、不含芳香烃、二氧化硫等污染物、燃烧排放低、闪点高、运输储存安全等特点。作为石化柴油的潜在替代能源,生物柴油因其独特的优越性和现实的需求越来越受到关注。利用酸化油生产生物柴油不仅可以缓解生物柴油原料不足问题,还可解决酸化油所带来的环境问题。
The convertion of acid oil to biodiesel by use of immobilized Candida lipase absorbed on textile cloth was studied in a fixed bed reactor, which can not only reduce the environmental pollution of acid oil, but also produce a substitute for petroleum diesel. The acid oil mixed with methanol was pumped into three fixed bed reactors in series, and the methanol was added with the molar flow rate same as the acid oil in each reactor. The effects of enzyme content, solvent content, water content, flow rate of reactant and temperature on the enzymatic reaction were analyzed. The result of orthogonal experiments indicates that the optimal transesterification can be performed under the following conditions: immobilized lipase content in acid oil, 20% ; hexane content in acid oil, 10% ; water content in acid oil, 10%, reaction temperature, 50 ℃ ; and flow rate of reactant, 0.08 g/rain. Under these conditions, the FAME content of 90.18% in the product is obtained. The immobilized lipase can be reused with relatively stable activity after glycerol being removed from the surface. By refining, most of the chemical and physical properties of biodiesel will meet the American and Germany biodiesel standards and exceed the Chinese standard of 0^# petroleum diesel except for carbon residue, density and kinematic viscosity.
Resumo:
Heterotrophic culture of microalgae to develop methods of increasing biomass productivity and storage lipids has brought new insight to commercial biodiesel production. To understand the relationship between heterotrophy and lipid production, the effects of carbon sources on the growth and lipid accumulation of Chlorella sorokiniana GXNN01 was studied. The alga exhibited an increased growth rate in response to the addition of carbon sources, which reached the stationary phase after 48 h at 30A degrees C. In addition, glucose and NaAc had a significant effect on the lipid accumulation during the early-stationary phase. Specifically, the lipid content was 0.237 +/- 0.026 g g(-1) cell dry weight and 0.272 +/- 0.041 g L-1 when glucose was used as the carbon source, whereas the lipid content reached 0.287 +/- 0.018 g g(-1) cell dry weight and 0.288 +/- 0.008 g L-1 when NaAc was used as the carbon source. The neutral lipid content was found to first decrease and then increase over time during the growth phase. A glucose concentration of 20 mmol L-1 gave the maximal lipid yield and the optimum harvest time was the early-stationary phase.
Resumo:
The economic feasibility of algal mass culture for biodiesel production is enhanced by the increase in biomass productivity and storage lipids. Effect of iron on growth and lipid accumulation in marine microalgae Chlorella vulgaris were investigated. In experiment I, supplementing the growth media with chelated FeCl3 in the late growth phase increased the final cell density but did not induce lipid accumulation in cells. In experiment II, cells in the late-exponential growth phase were collected by centrifugation and re-inoculated into new media supplemented with five levels of Fe3+ concentration. Total lipid content in cultures supplemented with 1.2 x 10(-5) mol L-1 FeCl3 was up to 56.6% biomass by dry weight and was 3-7-fold that in other media supplemented with lower iron concentration. Moreover, a simple and rapid method determining the lipid accumulation in C. vulgaris with spectrofluorimetry was developed. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
生物柴油是绿色清洁可再生能源,大力发展生物柴油对解决影响我国经济可持续发展的能源危机和环境危机具有重要意义。 本文就海洋滩涂能源油料植物海滨锦葵油脂的提取和制备生物柴油技术进行了研究。 1、利用超临界CO2流体萃取技术提取海滨锦葵籽油。结果表明超临界CO2流体萃取技术提取海滨锦葵籽油的最佳工艺参数为:萃取压力25MPa,萃取温度45℃,CO2流量18kg.h-1,萃取时间为120min,在该工艺条件下萃取三次,海滨锦葵籽油萃取率达到19.35%。 2、以海滨锦葵籽仁为原料,利用水酶法提取海滨锦葵籽仁油。水酶法提取海滨锦葵籽油的最佳工艺参数为:酶用量0.024ml.g-1,提取温度63℃,固液比1/6,提取时间为230min,在该工艺条件下海滨锦葵籽油提取率达到24.28%。 3、海滨锦葵油制备生物柴油的最佳工艺参数为:搅拌强度为1800r.min-1,催化剂KOH用量为海滨锦葵油质量的1%,醇油摩尔比6/1,反应时间50min,反应温度65℃,在该工艺条件下,酯交换反应三次,酯交换率达到97.8%。 4、利用固定化脂肪酶Novo435催化海滨锦葵油酯交换制备生物柴油。结果表明海滨锦葵油固定化脂肪酶催化法制备制备生物柴油的最优工艺参数为反应温度47℃,反应时间31h,催化剂用量18%,搅拌强度900r.min-1,醇油摩尔比3.2/1。在该工艺条件下酯交换率达到92.68%。 5、利用超临界法制备生物柴油,结果表明海滨锦葵油超临界法制备生物柴油的最佳工艺条件为:反应温度为300℃,反应压力为12MPa,反应时间为9min,搅拌强度为300r.min-1,醇油摩尔比为30/1。在此条件下,酯交换反应三次,酯交换率可达97.62%。 6、利用超声波辅助法制备生物柴油。结果表明海滨锦葵油超声波辅助法制备生物柴油的最佳工艺参数为:超声波功率为180W,催化剂KOH用量为海滨锦葵油质量的0.6%,反应温度65℃,醇油摩尔比7/1,在该工艺条件下酯交换反应三次,酯交换率达到99.85%。
Resumo:
Gemstone Team Genes to Fuels
Resumo:
The activity and nature (i e heterogeneous and/or homogeneous) of catalysts based on CsF supported on alpha-Al2O3 were investigated for the transesterification of vegetable oil with methanol. The effect of the activation temperature, CsF loading and the reusability in a recirculating reactor were first studied CsF/alpha-Al2O3 exhibited the highest activity for a CsF loading of 0 6 mmol/g and when activated at 120 degrees C An important aspect of this study is the effect of CsF leaching into the reaction mixture, which is attributed to the high solubility of CsF in methanol, leading to a complete loss of activity after one run It was Identified that the activity of the catalyst resulted from a synergy between alumina and dissolved CsF, the presence of both compounds being absolutely necessary to observe any conversion The use of an alumina with a higher surface area resulted in a far greater reaction rate, showing that the concentration of surface site on the oxide (probably surface hydroxyl) was rate-limiting in the case of the experiments using the low surface area alpha-Al2O3 This work emphasizes that combined homogeneous-heterogeneous catalytic systems made from the blending of the respective catalysts can be used to obtain high conversion of vegetable oil to biodiesel. Despite the homogeneous/heterogeneous dual character, such a catalytic system may prove valuable in developing a simple and cost-effective continuous catalytic process for biodiesel production (C) 2010 Elsevier B V All rights reserved
Resumo:
1. Crude glycerol from biodiesel production was offered ad libitum to broiler chickens in a 21-d feeding and digestibility trial. The study was designed as a 3*2+1 factorial design with 3 concentrations (33, 67, 100 g/kg) of glycerol from 2 sources, A and B (PRS Environmental Ltd and John Thompson and Sons Ltd) and a control diet. The diets were formulated to contain apparent metabolisable energy (AME) of 12.95 MJ/kg (assuming 14.6 MJ/kg for glycerol).
Resumo:
Combining whole cell biocatalysis and chemocatalysis in a single reaction sequence avoids unnecessary separations, and the associated waste and energy consumption. Bacterial fermentation has been employed to convert waste glycerol from biodiesel production into 1,3-propanediol. This 1,3-propanediol can be extracted selectively from the aqueous fermentation broth using ionic liquids. 1,3-propanediol in ionic liquid solution was converted to propanal by hydrogen transfer initiated dehydration (HTID) catalysed by a Cp*IrCl2(NHC) (Cp* = pentamethylcyclopentadienyl; NHC = carbene ligand) complex. The use of an ionic liquid solvent enabled the reaction to be performed under reduced pressure, facilitating the isolation of the product, and improving the reaction selectivity. The Ir(III) catalyst in ionic liquid was found to be highly recyclable.
Resumo:
This article evaluates the sustainability and economic potential of microalgae grown in brewery wastewater for biodiesel and biomass production. Three sustainability and two economic indicators were considered in the evaluation within a life cycle perspective. For the production system the most efficient process units were selected. Results show that harvesting and oil separation are the main process bottlenecks. Microalgae with higher lipid content and productivity are desirable for biodiesel production, although comparable to other biofuel’s feedstock concerning sustainability. However, improvements are still needed to reach the performance level of fossil diesel. Profitability reaches a limit for larger cultivation areas, being higher when extracted biomass is sold together with microalgae oil, in which case the influence of lipid content and areal productivity is smaller. The values of oil and/or biomass prices calculated to ensure that the process is economically sound are still very high compared with other fuel options, especially biodiesel.
Resumo:
Os biocombustíveis apresentam um interessante potencial de redução da dependência energética relativamente aos combustíveis fósseis. A produção de microalgas apresenta vários benefícios ambientais como sejam a utilização mais efetiva de terrenos, a captura de dióxido de carbono, a purificação de águas quando associada a um processo de tratamento de águas residuais e não provoca a disputa entre a produção de matéria-prima para alimentação e combustíveis. A cultura de microalgas para a produção de biodiesel tem recebido uma grande atenção nos últimos anos devido ao seu potencial. Neste trabalho pretende-se criar as etapas de processamento das microalgas em biodiesel onde são implementadas medidas de eficiência energética e aproveitamento de fontes poluidoras como o CO2. Para isso, formulou-se um modelo no programa Aspen Plus para simulação do processo desde a produção, colheita até à extração de óleo das microalgas e posterior avaliação económica do mesmo. Concluiu-se que para o projeto fosse pago no tempo de vida útil seria preciso vender o óleo a 13 $/kg. Aos preços atuais do óleo o projeto não é economicamente viável.
Resumo:
Succinic acid (SA) is a highly versatile building block that is used in a wide range of industrial applications. The biological production of succinic acid has emerged in the last years as an efficient alternative to the chemical production based on fossil fuels. However, in order to fully replace the competing petro-based chemical process from which it has been produced so far, some challenges remain to be surpassed. In particular, one main obstacle would be to reduce its production costs, mostly associated to the use of refined sugars. The present work is focused on the development of a sustainable and cost-e↵ective microbial production process based on cheap and renewable resources, such as agroindustrial wastes. Hence, glycerol and carob pods were identified as promising feedstocks and used as inexpensive carbon sources for the bioproduction of succinic acid by Actinobacillus succinogenes 130Z, one of the best naturally producing strains. Even though glycerol is a highly available carbon source, as by-product of biodiesel production, its consumption by A. succinogenes is impaired due to a redox imbalance during cell growth. However, the use of an external electron acceptor such as dimethylsulfoxide (DMSO) may improve glycerol metabolism and succinic acid production by this strain. As such, DMSO was tested as a co-substrate for glycerol consumption and concentrations of DMSO between 1 and 4% (v/v) greatly promoted glycerol consumption and SA production by this biocatalyst. Aiming at obtaining higher succinic acid yield and production rate, batch and fed-batch experiments were performed under controlled cultivation conditions. Batch experiments resulted in a succinic acid yield on glycerol of 0.95 g SA/g GLY and a production rate of 2.13 g/L.h, with residual production of acetic and formic acids. In fed-batch experiment, the SA production rate reached 2.31 g/L.h, the highest value reported in the literature for A. succinogenes using glycerol as carbon source. DMSO dramatically improved the conversion of glycerol by A. succinogenes and may be used as a co-substrate, opening new perspectives for the use of glycerol by this biocatalyst. Carob pods, highly available in Portugal as a residue from the locust bean gum industry, contain a significant amount of fermentable sugars such as sucrose, glucose and fructose and were also used as substrate for succinic acid production. Sugar extraction from raw and roasted carobs was optimized varying solid/water ratio and extraction time, maximizing sugar recovery while minimizing the extraction of polyphenols. Kinetic studies of glucose, fructose and sucrose consumption by A. succinogenes as individual carbon sources till 30 g/L were first determined to assess possible metabolic diferences. Results showed no significant diferences related to sugar consumption and SA production between the diferent sugars. Carob pods water extracts were then used as carbon source during controlled batch cultivations. (...)
Resumo:
Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted.
Resumo:
Densities and viscosities of five vegetable oils (Babassu oil, Buriti oil, Brazil nut oil, macadamia oil, and grape seed oil) and of three blends of Buriti oil and soybean oil were measured as a function of temperature and correlated by empirical equations. The estimation capability of two types of predictive methodologies was tested using the measured data. The first group of methods was based on the fatty acid composition of the oils, while the other was based on their triacylglycerol composition, as a multicomponent system. In general, the six models tested presented a good representation of the physical properties considered in this work. A simple method of calculation is also proposed to predict the dynamic viscosity of methyl and ethyl ester biodiesels, based on the fatty acid composition of the original oil. Data presented in this work and the developed model can be valuable for designing processes and equipment for the edible oil industry and for biodiesel production.