939 resultados para Amino acid specificity
Resumo:
Rh(II) acetate-catalyzed decompn. of diazophenylacetates PhC(N2)CO2Me 1 and PhC(N2)CO2R* 3 [R*OH = (-)-borneol, (+)-menthol, (-)-8-phenylmenthol] in the presence of a range of N-H compds. results in an N-H insertion reaction of the intermediate carbenoids and formation of N-substituted phenylglycine derivs. PhCH(NR1R2)CO2Me 2 [R1 = R2 = Et; R1 = 4-MeOC6H4, COCH2CHMe2, CO2CH2Ph, (S)-CH(CO2Me)CH2Ph, (S)-CHMePh, R2 = H; 64-83% yields] and PhCH(NR1R2)CO2R* 4 (R1 = R2 = Et; R1 = COMe, CO2Me, R2 = H; same R*; 37-71% yields). The corresponding reactions of di-Me ?-diazobenzylphosphonate PhC(N2)P(O)(OMe)2 5 with primary amines constitute a simple route to aminophosphonates PhCH(NHR)P(O)(OMe)2 6 (R = COMe, COEt, CO2CH2Ph, CO2CMe3, 4-ClC6H4, 4-MeC6H4, 4-MeOC6H4; 13-96% yields).
Resumo:
Ionic liquids (ILs) having either cations or anions derived from naturally occurring amino acids have been synthesized and characterized as amino acid-based ionic liquids (AAILs) In this work, the experimental measurements of the temperature dependence or density. viscosity, heat capacity, and thermal conductivity of several AAILs, namely, tributylmethylammonium serinate ([N-444][Ser], tributylmethylammonium taurmate ([N-444][Tau]) tributylmethylammonium lysinate a [N-444][ Lys]), tributylmethylammonium threonate ([N-444][Thr]), tetrabutylphosphonium serinate ([P-4444][Ser]), tetrabutylphosphonium taurmate ([P-4444][Tau]), tetrabutylphosphonium lysinate ([P-4444][Lys]), tetrabutylphosphonium threonate P-4444 Thr tetrabutylphosphonium prolinate P-4444 ((Pro(), tetrabutylphosphonium valinate ([P-4444][Val]), and tetrabutylphosphonium cysteinate ([P-4444][Cys]), are presented The influence of cations and anions on studied properties is discussed. On the basis of experimental data. the QSPR (quantitative structure property relationship) correlations and group contribution methods for thermophysical properties of AAILs have been developed, which form the basis for the development of the computer-aided molecular design (CAMD) of AAILs It has also been demonstrated that that the predictive data obtained by con elation methods ale in good agreement with the experimental data The correlations developed, herein. can thus be used to evaluate the studied thermophysical properties of AAILs for use in process design or in the CAMD of new AAILs
Resumo:
Natriuretic peptides are common components of reptile venoms and molecular cloning of their biosynthetic precursors has revealed that in snakes, they co-encode bradykinin-potentiating peptides and in venomous lizards, some co-encode bradykinin inhibitory peptides such as the helokinestatins. The common natriuretic peptide/helokinestatin precursor of the Gila Monster, Heloderma suspectum, encodes five helokinestatins of differing primary structures. Here we report the molecular cloning of a natriuretic peptide/helokinestatin precursor cDNA from a venom-derived cDNA library of the Mexican beaded lizard (Heloderma horridum). Deduction of the primary structure of the encoded precursor protein from this cloned cDNA template revealed that it consisted of 196 amino acid residues encoding a single natriuretic peptide and five helokinestatins. While the natriuretic peptide was of identical primary structure to its Gila Monster (H. suspectum) homolog, the encoded helokinestatins were not, with this region of the common precursor displaying some significant differences to its H. suspectum homolog. The helokinestatin-encoding region contained a single copy of helokinestatin-1, 2 copies of helokinestatin-3 and single copies of 2 novel peptides, (Phe)(5)-helokinestatin-2 (VPPAFVPLVPR) and helokinestatin-6 (GPPFNPPPFVDYEPR). All predicted peptides were found in reverse phase HPLC fractions of the same venom. Synthetic replicates of both novel helokinestatins were found to antagonize the relaxing effect of bradykinin on rat tail artery smooth muscle. Thus lizard venom continues to provide a source of novel biologically active peptides. (C) 2011 Published by Elsevier Inc.
Resumo:
An iron prophyrin complex has been immobilized on the surfaces of platinum, silver, and indium doped-tin oxide coated glass by using the poly(gamma-ethyl L-glutamate)-N-(3-aminopropyl)imidazole derivative 1 as a linking agent, thus allowing-the surface-enhanced resonance Raman and UV-VIS absorption spectra and electrochemical properties of the porphyrin to be studied in solvents in which it is not normally soluble.
Resumo:
Mast cell activation by polycationic substances is believed to result from a direct activation of G protein alpha subunits and it was suggested that the adaption of amphipathic, alpha-helical conformations would allow the peptide to reach the cytosolic compartment to interact with G proteins (Mousli et al., 1994, Immunopharmacology 27, 1, for review). We investigated the histamine-releasing activity of model peptides as well as analogues of magainin 2 amide and neuropeptide Y with different amphipathicities and alpha-helix content on rat peritoneal mast cells. Amphipathic helicity is not a prerequisite for mast cell activation. Moreover, non-helical magainin peptides with high histamine-releasing activity were less active in the liberation of carboxyfluoresceine from negatively charged liposomes, indicating that peptide-induced mast cell activation and peptide-induced membrane perturbation do not correlate. In contrast to the negligible influence of the secondary structure, amino acid configuration may exert a striking influence on peptide-induced mast cell activation. Thus histamine-release by substance P was markedly impaired when the L-amino acids in the positively charged N-terminal region were replaced by D-amino acids, with [D-Arg(1)]substance P being the most inactive substance P diastereoisomer.
Resumo:
Wzx belongs to a family of membrane proteins involved in the translocation of isoprenoid lipid-linked glycans, which is loosely related to members of the major facilitator superfamily. Despite Wzx homologs performing a conserved function, it has been difficult to pinpoint specific motifs of functional significance in their amino acid sequences. Here, we elucidate the topology of the Escherichia coli O157 Wzx (Wzx(EcO157)) by a combination of bioinformatics and substituted cysteine scanning mutagenesis, as well as targeted deletion-fusions to green fluorescent protein and alkaline phosphatase. We conclude that Wzx(EcO157) consists of 12 transmembrane (TM) helices and six periplasmic and five cytosolic loops, with N and C termini facing the cytoplasm. Four TM helices (II, IV, X, and XI) contain polar residues (aspartic acid or lysine), and they may form part of a relatively hydrophilic core. Thirty-five amino acid replacements to alanine or serine were targeted to five native cysteines and most of the aspartic acid, arginine, and lysine residues. From these, only replacements of aspartic acid-85, aspartic acid-326, arginine-298, and lysine-419 resulted in a protein unable to support O-antigen production. Aspartic acid-85 and lysine-419 are located in TM helices II and XI, while arginine-298 and aspartic acid-326 are located in periplasmic and cytosolic loops 4, respectively. Further analysis revealed that the charge at these positions is required for Wzx function since conservative substitutions maintaining the same charge polarity resulted in a functional protein, whereas those reversing or eliminating polarity abolished function. We propose that the functional requirement of charged residues at both sides of the membrane and in two TM helices could be important to allow the passage of the Und-PP-linked saccharide substrate across the membrane.
Resumo:
WecA, an integral membrane protein that belongs to a family of polyisoprenyl phosphate N-acetylhexosamine-1-phosphate transferases, is required for the biosynthesis of O-specific LPS and enterobacterial common antigen in Escherichia coli and other enteric bacteria. WecA functions as an UDP-N-acetylglucosamine (GlcNAc):undecaprenyl-phosphate GlcNAc-1-phosphate transferase. A conserved short sequence motif (His-Ile-His-His; HIHH) and a conserved arginine were identified in WecA at positions 279-282 and 265, respectively. This region is located within a predicted cytosolic segment common to all bacterial homologues of WecA. Both HIHH279-282 and the Arg265 are reminiscent of the HIGH motif (His-Ile-Gly-His) and a nearby upstream lysine, which contribute to the three-dimensional architecture of the nucleotide-binding site among various enzymes displaying nucleotidyltransferase activity. Thus, it was hypothesized that these residues may play a role in the interaction of WecA with UDP-GlcNAc. Replacement of the entire HIHH motif by site-directed mutagenesis produced a protein that, when expressed in the E. coli wecA mutant MV501, did not complement the synthesis of O7 LPS. Membrane extracts containing the mutated protein failed to transfer UDP-GlcNAc into a lipid-rich fraction and to bind the UDP-GlcNAc analogue tunicamycin. Similar results were obtained by individually replacing the first histidine (H279) of the HIHH motif as well as the Arg265 residue. The functional importance of these residues is underscored by the high level of conservation of H279 and Arg265 among bacterial WecA homologues that utilize several different UDP-N-acetylhexosamine substrates.
Resumo:
Control of fasciolosis is threatened by the development of anthelmintic resistance. Enhanced triclabendazole (TCBZ) efflux by ABC transporters such as P-glycoprotein (Pgp) has been implicated in this process. A putative full length cDNA coding for a Pgp expressed in adult Fasciola hepatica has been constructed and used to design a primer set capable of amplifying a region encoding part of the second nucleotide binding domain of Pgp when genomic DNA was used as a template. Application of this primer set to genomic DNA from TCBZ-resistant and -susceptible field populations has shown a significant difference in the alleles present. Analysis of an allele occurring at a three-fold higher frequency in the "resistant" population revealed that it was characterised by a serine to arginine substitution at residue 1144. Homology modelling studies have been used to locate this site in the Pgp structure and hence assess its potential to modify functional activity. © 2012 Elsevier B.V.
Resumo:
A number of tetraalkylammonium and tetraalkylphosphonium amino acid based ionic liquids (AAILs) have been successfully used and recycled for the reactive extraction of naphthenic acids from crude oil and crude oil distillates. Spectral studies show that the mechanism by which this occurs is through the formation of a zwitterionic complex. Therein, the amino acid anion plays a key role in the formation of this complex. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We present the first direct measurement of ultrafast charge migration in a biomolecular building block the amino acid phenylalanine. Using an extreme ultraviolet pulse of 1.5 fs duration to ionize molecules isolated in the gas phase, the location of the resulting hole was probed by a 6 fs visible/near-infrared pulse. By measuring the yield of a doubly charged ion as a function of the delay between the two pulses, the positive hole was observed to migrate to one end of the cation within 30 fs. This process is likely to originate from even faster coherent charge oscillations in the molecule being dephased by bond stretching which eventually localizes the final position of the charge. This demonstration offers a clear template for observing and controlling this phenomenon in the future.
Resumo:
In the past few years, attosecond techniques have been implemented for the investigation of ultrafast dynamics in molecules. The generation of isolated attosecond pulses characterized by a relatively high photon flux has opened up new possibilities in the study of molecular dynamics. In this paper, we report on experimental and theoretical results of ultrafast charge dynamics in a biochemically relevant molecule, namely, the amino acid phenylalanine. The data represent the first experimental demonstration of the generation and observation of a charge migration process in a complexmolecule, where electron dynamics precede nuclear motion. The application of attosecond technology to the investigation of electron dynamics in biologically relevant molecules represents a multidisciplinary work, which can open new research frontiers: those in which few-femtosecond and even subfemtosecond electron processes determine the fate of biomolecules. It can also open new perspectives for the development of new technologies, for example, in molecular electronics, where electron processes on an ultrafast temporal scale are essential to trigger and control the electron current on the scale of the molecule.