551 resultados para seeding
Resumo:
繁殖更新是植物生活史的重要阶段,在退化生态系统中,植物繁殖更新能力往往较差,是植被恢复的限制环节,因而也成为恢复研究重点和核心。本研究选择岷江干旱河谷广泛分布的三种蔷薇:多苞蔷薇(R. multibracteata)、黄蔷薇(R. hugonis)和川滇蔷薇(R. soulieana)为研究对象,通过野外调查,在查明其生长、繁殖更新状况的基础上,采用控制和模拟实验,对种子和幼苗阶段进行了深入研究,综合分析更新潜力,并提出相对应的促进更新和植被恢复措施。主要结论如下: 1)三种蔷薇在岷江干旱河谷广泛分布,生长和繁殖状况良好,结实量大。各生长指标:株高、基径和冠幅,繁殖指标:结实数量、重量和单果重量都具有显著的空间差异性。基径对多苞蔷薇结实量影响最大;而冠幅对黄蔷薇结实量影响最大。海拔和纬度是对蔷薇生长和繁殖影响最大的环境因素,随着海拔和纬度的升高,植株生长更高大,结实量增加;坡度和坡向对其生长和繁殖也有一定影响,随着坡度 和坡向增加,蔷薇生长和结实受到抑制。 2)三种蔷薇在岷江干旱河谷更新现状不佳, 但更新潜力大。活力种子比率低,动物取食以及两年生幼苗的大量死亡是蔷薇更新的主要限制因素。多苞蔷薇和黄蔷薇的结实率低,川滇蔷薇较高。三种蔷薇种子产量大,但种子质量较差,更新具有充足的种源。三种蔷薇都能形成持久种子库,种子库中种子总量大,但有效种子少,黄蔷薇被动物啃食的比例很高,多苞蔷薇和川滇蔷薇也有一部分种子受到动物破坏。三种蔷薇幼苗库组成特征表现为,当年生幼苗所占比例很高,年龄较大幼苗所占比例小。 3)三种蔷薇都具有不同程度休眠,未经处理种子的发芽率极低。黄蔷薇休眠程度最深,为深度生理休眠;多苞蔷薇为中度生理休眠;川滇蔷薇为非深度生理休眠。三种蔷薇种子在形态上发育成熟,种皮具有透水性。蔷薇果果肉和瘦果中含有抑制物质,其浸泡液抑制了油菜种子萌发,果肉抑制作用更强,果肉和瘦果浸泡液的抑制程度分别为:川滇蔷薇>黄蔷薇>多苞蔷薇。切割和硫酸腐蚀提高了川滇蔷薇种子的发芽能力,而对多苞蔷薇和黄蔷薇没有影响。完全去除瘦果果皮和种皮提高了多苞蔷薇种子发芽率,但对黄蔷薇没有影响。赤霉素和烟水对蔷薇种子萌发没有促进作用。三种蔷薇打破休眠所需低温层积时间分别为:黄蔷薇>多苞蔷薇>川滇蔷薇。对于多苞蔷薇和川滇蔷薇,层积前对种子进行硫酸腐蚀或暖温层积能缩短低温层积时间,提高发芽率。对于多苞蔷薇,变温层积中暖温层积和低温层积具有一定的负补性,即延长暖温层积可以缩短种子萌发对低温层积的需要。 4)多苞蔷薇种子形态特征和种子休眠与萌发在不同海拔梯度间存在较大差异。种子采集时间、采集季节和干藏影响多苞蔷薇和川滇蔷薇的种子休眠。多苞蔷薇果实大小、种子大小和千粒重、种皮厚度随海拔升高而增加,而种子饱满率和活力随海拔升高而降低,种子休眠程度也随海拔升高而增加。种皮厚度与种子大小、千粒重成正相关关系,硫酸腐蚀后的种子经过不同时间的低温层积后,种子发芽率与种皮厚度、种子大小、千粒重、海拔成正相关关系。2006 年采集川滇蔷薇和多苞蔷薇种子休眠程度较2005 年低。种子休眠随种子年龄增加而减弱。高温和干旱能减轻多苞蔷薇和川滇蔷薇种子休眠。 5)三种蔷薇的生长和生物量积累在干旱胁迫条件下受到抑制,而生物量分配、叶片形态特征和水分利用特征等都发生了变化。三种蔷薇的根、茎、叶各器官生物量以及总生物量等在干旱胁迫下明显减小,叶片脱落数量增加。在干旱胁迫条件下,较多的生物量分配到地下部分,从而这使R/S 明显增加。比叶面积(SLA)和冠层面积比(LAR)对干旱胁迫的反应不敏感,仅有部分物种在干旱胁迫条件下发生了变化,并且其变化特点在不同年龄幼苗之间有一定差异。干旱胁迫对WUE 的影响在不同物种间存在差异。多苞蔷薇和黄蔷薇的WUE 随着干旱胁迫的增加而增大, 而川滇蔷薇的WUE 则随干旱胁迫增加而减小。在干旱胁迫条件下,多苞蔷薇和黄蔷薇叶片脱落量和生物量减小幅度较川滇蔷薇大,表明其抗旱能力较强。在干旱胁迫条件,三种蔷薇两年生幼苗的生物量减小幅度较当年生幼苗小,表明两年生幼苗的抗旱能力更强。 6)两种植被恢复措施中,幼苗移栽比播种具有更好的植被恢复效果。播种后,蔷薇种子的发芽率较高,但出苗率都很低,即使出苗,幼苗也几乎在一月内全部死亡。 三种微生境条件下(灌木、半灌木和裸地),种子出苗和幼苗成活没有差异。移栽幼苗总体死亡率都比较低,小于20%。特别是两年生幼苗死亡率更低,小于2%。移栽后的幼苗生长状况良好,在整个生长季中,各生长指标不断增加。生境对幼苗的存活率没有显著影响,但对于幼苗的生长和生物量积累有一定影响,裸地更有利于幼苗生长和生物量积累。与当年生幼苗相比,两年生幼苗具有更高的成活率。总之,三种蔷薇在干旱河谷分布广泛、生长繁殖状况良好,结实量大,具有丰富种源,繁殖更新潜力大,但繁殖更新状况不佳;种子散布后动物对种子的取食、种子的深度休眠过程、种子出苗以及当年生幼苗的存活和定居是更新的主要限制环节。水分是影响结实、种子休眠解除和萌发,幼苗存活和定居的最主要的限制因素。在植被恢复中,应在种子成熟季节大量采集种子,在室内打破休眠后进行人工播种,培育两年生幼苗,通过幼苗移栽方式进行植被恢复。川滇蔷薇应栽种在相对湿润的过渡区,而多苞蔷薇和黄蔷薇可以应用于核心区植被恢复。 Regeneration is an important phase in plant life cycle. It has been a key component of ecological restoration in degradation ecosystem in which plants commonly has poor regeneration. In this paper, we investigated the natural growth, propagation and regeneration status of native three rose species, Rosa multibracteata, R. hugonis and R. soulieana, and analysis the limitation in seed germination and seedling establishment stages. Advice on facilitating the use of these plants in restoration based on the results has been proposed. The results were as follows: 1) Three rose plants widely distributed in the dry valley of the Minjiang River, and made a good performance in growth and propagation. There were significant spatial differences in each growth parameter, such as ramet height, basal diameter, crown diameter and propagation parameters including hip number of a clump, hip mass of a clump and a hip mass. Basa diameter was the most important growth parameter influencing fruit number for R. multibracteata and crown diameter was for R. hugoni. Altitude and latitude had the greatest effect on the growth and propagation of rose plants among environmental conditions. Each parameter of growth and propagation increased with the increase of altitude and latitude. In addition, the increase of slope and aspect limited the growth and propagation. 2) Three rose plants had poor natural regeneration, but great regeneration potential. Low seed viability, predation and higher mortality of current year old seedlings were the limitation in regeneration. R. multibracteata and R. hugonis had higher fruiting rates than R. souliean. All three plants produced a great number of seeds, while their viability was poor. Three rose plants had persistent seed banks, with high total seed number but very low viable seed density. Predation was most severe in R. hugonis, and it also existed to some degree in R. multibracteata and R. soulieana. The seedling age-structure was characteristic of current-year seedlings predominating and few older seedlings were observed. 3) Three rose seeds were dormant and untreated seeds germinated with very low germination percentages. The rose seeds had morphological mature embryos, and achenes were permeable. Some inhabit substances existed in hips and achenes for the extracts of hips and achenes inhibited germination of Brassica campestris. The inhibition effect of the extracts of three rose hip and achenes was R. soulieana>R. hugonis>R. multibracteata. Mechanical and H2SO4 scarification increased R. soulieana germination but had no effect on germination of R. hugonis and R. multibracteata seeds. Full removal of pericarp and testa improved the germination of R. multibracteata but did not affect R. hugonis germination. GA3 and smoke water had no positive effect on rose seed germination. The periods of cold stratification required to released seed dormancy was R. hugonis > R. soulieana >R. multibracteata. H2SO4 scarification and warm stratification shortened cold stratification to release dormancy for R. soulieana and R. multibracteata. Warm stratification had complementary effect for cold stratification, i.e. the longer warm stratification seeds received, the shorter cold stratification were required to obtain the same germination percentage. Three rose seeds had different kinds of dormancy; R. hugonis has deep physiological dormancy, R. multibracteata with intermediate physiological dormancy and R. souliean non-deep physiological dormancy. 4)The seeds traits and dormancy of R. multibracteata showed significant difference across altitudes. Year and season of seed collection had significant effect on seed dormancy for both R. souliean and R. multibracteata. Hip size, seed size, seed weight, seed coat thickness and seed dormancy level increased with the increase of the altitude. There were positive relations between seed coat thickness with seed size and seed weight. Germination percentage of seeds treated with H2SO4 scarification following different periods of cold stratification showed positive relation with seed coat thickness, seed size, seed weight and altitude. Seeds of R. souliean and R. multibracteata collected in 2006 had low dormancy level than those collected in 2005. Seed dormancy decreased with increasing seeds age. High temperature and drought were associated with low dormancy level. 5) Seedling growth, the total dry mass and their components of seedlings were reduced, while leaf senescence accelerated under drought stress. More biomass allocation to root system resulted in higher R/S ratio under drought. Water-use efficiency (WUE) of R. multibracteata and R. hugonis increased, while it declined for R. soulieana under drought stress. R. soulieana seedlings had poor drought-resistance capacity it had more senescent leaves, and its reduction of biomass was stronger than two other rose plants under drought. The reduction degree of one year old seedlings under drought stress was slighter than that of current year seedlings. Therefore, one year old seedling was more drought-resistent compared to current year seedlings. 6)Planting seedlings may have better effect in comparison with direct seeding. Most seeds germinated after seeding, but seedling emergence was very low. More than 80 % seedlings from direct seeding died within a months after emergence. Seedling emergence and survival rate did not show difference among microhabitats. Mortality rates of seedlings artificially planted in microhabitats were general lower than 20 %, and the mortality rate of one year old seedlings was lower than 2 %. Each grow parameter including plant height, leaf number and branch number continually increased after planting. Microhabitat type had effect on the growth parameter and biomass production, but it did not influence the seedling survival. Bare land tended to facilitate seedling growth. One year old seedlings had higher survival rate than current year seedlings. In conculsion, the three rose had wide distribution in the dry valley of the Minjiang River. They produced many seeds and had tolerance to drought stress to some degree. But they had poor regeneration in habitats may be caused by predation, seed dormancy,and high mortality in current year seedlings. We recommend that rose plants should be utilized in restoration by planting two-year old seedlings in spring. A large quantity of seeds should be collected artificially in autumn, release seed dormancy in room, and then cultivate two-year old seedlings by seeding in particular container. R. soulieana seedling probably be planted in transition area, and R. multibracteata and R. hugonis can be used in core area of the dry valley of the Minjiang River.
Resumo:
维生素(Vitamin)又称维他命,为“万年青”产品,是维持人体生命健康必需的一类低分子有机化合物质。维生素对人体健康的作用人们研究很多, 维生素可以增强人体对感染的抵抗力,降低出生缺陷及降低癌症和心脏病发病率等,一旦缺乏,肌体代谢就会失去平衡,免疫力下降,各种疾病,病毒就会趁虚而入;而维生素对作物影响的研究却很少。目前为止,尚无对用维生素浸种的方法来研究外源维生素是否对小麦种子萌发及幼苗生长起调节作用的报道,且对其在小麦抗逆性方面影响的研究甚少,对盐的胁迫抗性研究尚未有人报道。小麦(Triticum aestivum L.)属于拒盐的淡土性作物。盐害不利于小麦生长,严重影响小麦的产量和品质。本研究采用4 种不同维生素VB1、VC、VB6、VPP,分别对供试小麦品种川育12(红皮)、川育16(白皮)小麦浸种后,在一般自然条件下和逆境(盐胁迫条件)下,进行试验。探讨在正常情况下与在不同盐浓度条件下,各维生素及盐浓度对小麦发芽及幼苗生长的影响,并且比较两种不同皮色的小麦在相同盐胁迫条件下的差异表现,同时研究维生素处理的特异性,且哪种维生素对盐害缓解作用最佳。研究结果表明:在无盐胁迫(自然)条件下,对用4 种不同维生素VB1、VC、VB6、VPP 浸种小麦川育12、川育16 后的种子萌发及幼苗生长(幼苗的根长、根重、苗高、苗鲜重)的研究结果表明:4 种外源维生素浸种均对小麦发芽有调节作用,都能提高其最终发芽率。但是提高幅度有所差异。用VB6 浸种后的小麦提高幅度最多,VC 次之,VPP 提高幅度最小。同时,4 种外源维生素浸种对小麦种子的出芽速度及芽后长势也有一定的影响。VB6、VC 处理的小麦种子出芽速度最快,萌发后长势最好;VB1 出芽速度相对较慢,VPP 最慢,但都大于对照;VB1 处理长势略高于对照,VPP 处理的小麦长势则低于对照。从整体来看,VB6、VC处理促进效应明显, VB1 次之,而VPP 在某些方面无效甚至产生负效应。此外,相同的维生素处理对不同的品种的种子萌发、生长效果也存在差异,各种维生素作用于川育12 的效应均强于对川育16。进一步对幼苗根系TTC 还原力及幼苗叶片中硝酸还原酶活性进行测定、分析。研究发现:并非所有种类的维生素对幼苗根系TTC 还原力及幼苗叶片中硝酸还原酶活性的提高都有帮助。幼苗根系TTC 还原力在不同维生素处理下存在显著差异,而与小麦品种关系甚微。经VB6、VC 处理后,根系TTC 还原力测定值均显著高于对照,VB1 不明显,VPP 则略低于对照。VB6、VC 处理的幼苗叶片中硝酸还原酶的含量大于对照,VB1 与对照相差无几,而VPP 处理的川育12 幼苗叶片中的硝酸还原酶活性比对照CK 略高,而在川育16 中则略比对照CK 有所下降,呈现出抑制效应。综上结果表明:VB6、VC 具有促进种子发芽,幼苗生长及根系生长的作用,是较好的促生长剂;VPP 具有抑制作用,是较好的抑制剂,可进一步研究、开发利用。在盐胁迫条件下,对用4 种不同维生素VB1、VC、VB6、VPP 浸种川育12、川育16 后的种子萌发及幼苗生长(幼苗的根长、根重、苗高、苗鲜重)的研究结果表明:在不同盐浓度胁迫条件下, 各处理的种子萌发及幼苗生长均受到不同程度的抑制。随着盐浓度的增加, 发芽率、发芽指数和活力指数成下降趋势;幼苗的根长、根重、苗高、苗鲜重不断降低。4 种维生素处理间也表现出较大差异。VB6、VC 在每个处理中均保持对盐害的缓解作用,VB6 较VC 更易于促进发芽及幼苗生长。最终发芽率高,根系多、长、重,苗高高、重。而VB1、VPP 则表现出抑制作用。在高盐浓度150mM 时,4 种维生素浸种后的种子,其最终发芽率均不能达到40%,但VB6、VC 处理最终发芽率、苗重、根重均高于对照,VPP 最终发芽率、苗重、根重均低于对照。进一步对幼苗根系TTC 还原力及幼苗叶片中脯氨酸含量进行测定、分析。研究发现:不同盐浓度,不同维生素处理、不同品种间存在差异。随着盐浓度的增加(75mM,100mM,150mM),幼苗根系TTC 还原力活性成下降趋势,幼苗叶片中脯氨酸的积累量成上升趋势。VB6 处理脯氨酸含量增加最为明显,VC 次之,VPP 与对照接近,其变化幅度最小。经VB6、VC 处理后的幼苗根系还原强度,在不同盐浓度下,测定值均显著高于对照,VB1 不明显,VPP 则低于对照,产生负效应。此外,品种间表现不尽相同,相同的维生素处理,相同的盐浓度对不同的品种的种子萌发、生长效果也存在差异, 4 种维生素对川育16 的作用均强于川育12,但其影响趋势是一致的。说明VB6、VC 具有耐(抗)盐性,可以促进种子发芽和幼苗生长,是较好的耐(抗)盐拌种剂。 Vitamin is one kind of necessary low molecular compound for humans tosustain health and life. Lots of Studies have been done on the effectc of the vitaminsfor people. Vitamin can help people improve the body's natural resistance to disease,Drop the rate of birth defects、cacers and the incidence of the heart diseases. Ifpeople have less of them, the metabolism of the organism may throw off balance,immunity may drop off, and catch disease; Though the effects for Vitamin to thecrops are limited. up to now, there’s no one use soking seeds of wheats with vitaminsas a method, to study on how the effects will happen on the wheat seed germinationand seedling growth, and there are only few reserches on antireversion force forwheats ,none for the antireversion force in Sault stress condition.Wheat(Triticum aestivum L.)is sensitive to the salt, so the salt damage will doharm to wheat’s growth, it will have an unfavorable impact on the output and thequality of wheat.On this reaserch, we Soaking CHY12(red)、CHY16 (white) wheat seeds withVitamin C, B1, PP, B6 (50mg/L) as a pretreatment first. Then under two condition: one is in the normal environment the other is in different Salinity, we begin ourexperiments. Then disscuss on if the vitamin and salinity affect the wheat seedgermination and seedling growth, and what is the different between the two of them,the result shows that:Under the normal condition, after soaking seeds with VB1、VC、VB6、Vpp,we study on the their seed germination and the seeding growth(the root length andweights, The seedling heights and weights), it shows that all of those four kinds ofvitamin can adjust the seed germination, but different in The growth rate. VB6 isbest for increase, VC comes second,VPP is the worst. Meanwhile, those four vitaminalso have effect on the speed of the sprouting of the wheat. VB6、Vc can faster theseed germination most, and the seedlings are all doing well; VB1 do little effects onthe budding, Vpp is the worst, but all treatments are better than CK; but in Vi, VB1some what above the CK, while VPP lower than that. On the whole, the acceleratingeffect of VB6、VC are obvious, VB1 takes second place, but VPP in some aspects arenoneffective even have negative effect. Furthermore, different kind of seeds with thesame vitamin may different in seed germination and seedling growth, four vitaminson CHY16 is better than CHY12.More studies on TTC reductive capacity of roots and the activity of nitratereductase in the leaves, the reasult shows not all the vitamin can help the seedlings toimprove the TTC reductive capacity and the activity of nitrate reductase. TTCreductive capacity in different treatments shows significant differences,but notcorrelate to the variety of the wheat. The TTC reductive capacity of VB6、Vctreatments are all higher than CK, VB1 is nearly the same as CK, VPP is a littlelower than CK. Through the study of acivity of nitrate reductase, it shows that,VB6、VC are higher than CK ,VB1 is nearly the same as CK also, VPP is a little higher inthe CK of CHY12 but lower in CHY16. Through all the results above: VB6、Vc helpthe wheat seed germination, seedling growth and the growth of roots, is theperfectable factor of stimulating the growth; Vpp is a inhibition, that’ll be furtherreserch,and well develop and utilize in the future.Under the different Salinity condition, after soaking seeds with VB1、VC、VB6、Vpp,we study on the their seed germination and the seeding growth(the root lengthand weights, The seedling heights and weights), it shows that: under differentsalinity, the seed germination and the seedling growth of any treatment are inhibited.With the increase of the concentration, the germination rate, Vi、Gi all had fallen; theroot length and weight, the seedling heights and weights steadily sank down. There are also have pronounced difference between all treatments with four differentvitamins.VB6、VC in all treatments are alleviative the salt damage, VB6 is easier tocause to put forth buds than VC, and it’s quantitative value is the highest in theultimate germination rate, in root and seedlings’ hight and weight. Though the VPP、VB1 are seems to inhibite its growth. Under the high concentration150mM Nacl, theultimate germination rate in all treatments are below the 40%, but VB6、VC’squantitative values in any experiments are higher than CK,while VPP lower thanCK.Then we study on the TTC reductive capacity of roots and the content of Polinein leaves, the result shows that between the different salinity, different vitamintreatments, different varieties of the wheat have discrepancy.along with theincreasing concentraion of the salinity(75mM,100mM,150mM),TTC reductivecapacity of roots decreases, the accumulation of the content of Poline in leaves havean upward trend. The increase of VB6’s treatment are obviously, VC comessecond,VPP is nearly come up with CK, changes a little. In TTC reductive capacity of roots’s reserch, VB6、VC are higher than CK at any time,VB1 is not palpable,VPP is lower than CK, makes negative affect on wheat. In addition, varieties of thewheats are remain different, no matter it shows promoting or inhibiting, all fourvitamins have moreobvious effects on CHY16 than CHY12, but the tendency of theeffection are the same. It is say that VB6、VC can help wheat to standwith the saultwell, and promot in growth,they are the better reagent to mix with the seed.
Resumo:
通过田间试验研究了沙打旺、紫花苜蓿和达乌里胡枝子3种豆科牧草在黄土旱塬以不同密度单播、混播时的竞争生长能力及水分利用效率。单播时苜蓿生长次年3个密度的生产力分别为15349kg·hm-2、20582kg·hm-2、21531kg·hm-2,沙打旺和胡枝子3个密度的生产力分别为7979kg·hm-2、16 440 kg·hm-2、21055kg·hm-2和2412kg·hm-2、5270kg·hm-2、7102kg·hm-2。混播草地生产力以苜蓿+胡枝子最高(平均19227kg·hm-2),沙打旺与胡枝子混播的生产力最低(平均11977kg·hm-2)。和生产力较高的参混种苜蓿、沙打旺单播相比,苜蓿与沙打旺混播及沙打旺与胡枝子混播的生产力在3种密度下均有不同程度的降低。苜蓿主根下扎深度2m,0~60cm根系占总根量的66%,沙打旺和胡枝子根系最大下扎深度分别为1.8 m和1.5m,0~60cm根系占总根量比例分别是80%、91%。3种牧草中苜蓿的平均水分利用效率最高,为25.75kg·mm-1·hm-2,胡枝子最低为7.71kg·mm-1·hm-2,沙打旺居中。苜蓿群体种内个体间竞争强度高于沙打旺和胡枝子。结果...
Resumo:
试验采用室内研究的方法,探讨2种以环境废弃资源为主要原料的新型土壤改良剂的基本水分特性,验证其对玉米苗期的影响。试验结果表明,2种改良剂在不同溶液中溶胀度不同,PJG在蒸馏水中溶胀度最大,PFL则是在自来水中吸水能力最强。PFL的吸水速率要低于PJG,单位质量最大吸水量1.705,为PJG的46.9%。2种改良剂对玉米出苗率的影响不是很明显,但能显著地提高玉米苗期株高和叶面积,对苗期土壤水分的散失也起到了很好的抑制作用。2种改良剂都能明显提高玉米苗期水分利用效率,最优水平分别高于对照27.89%和58.99%。综合各方面结果,建议在玉米试验中使用PJG的最佳浓度为0.8%,PFL为0.05%。
Resumo:
根据调查资料 ,论述了外来种和乡土树种在土壤水分 ,林下自然条件下更新等方面的有利和不利因素 ,探讨了经济效益 ,乡土树种的不可替代作用等问题 ,最后提出了“延安试验研究区造林应以乡土树种为主体 ,辅以外来树种”的思路 ,针对这一思路提出了对策
Resumo:
本文依据田间试验数据 ,采用Jensen模式 ,研究了黄土旱区冬小麦、春玉米这两种优势作物的—水分模型 .研究结果表明 ,小麦在播种~返青期缺水敏感指数 (λ)最大 ,对缺水最为敏感 ;拔节~抽穗期次之 ,然后是抽穗~灌浆期 ,而灌浆~成熟期和返青~拔节期的敏感性最小 .总耗水量在 32 0~ 42 0mm之间 ,灌水量为 2 6 0~ 30 0mm左右、且分布在冬前和拔节~抽穗期是节水高产高效的灌水模式 .玉米拔节 -抽穗期和抽穗 -灌浆期对缺水最敏感 ,拔节前和灌浆 -成熟期敏感性小 .说明拔节后到抽穗期补水对产量作用最大 ,其次为抽穗 -灌浆期 .这为黄土旱区制定灌溉制度提供了重要理论依据
Resumo:
在田间完全旱作条件下采用3个密度和2种播种方式观察了3种多年生豆科牧草生长第2年对土壤水分的消耗利用情况。结果表明:苜蓿主要耗水深度在2~3 m,最深可达5 m,其中、高密度处理3 m以上土壤水分含量都在稳定田间持水量之下,已经开始形成土壤下伏干层;沙打旺耗水深度在0~2 m,最低含水量(11.61%)处于80~100 cm,在雨季可以恢复到稳定田间持水量之上;达乌里胡枝子主要耗水深度在1 m以上,最低含水量也在稳定田间持水量之上。单播沙打旺、苜蓿和达乌里胡枝子全生长期内对土壤水分的消耗分别为249.9、180.2和136.6 mm,水分利用效率分别是29.39、26.04和8.91 kg.mm-1.hm-2。混播、加大播种密度都会增加3种牧草土壤水分消耗,降低土壤储水量,提高干草产量和水分利用效率,但影响程度因牧草种类、播种方式以及不同的生长时段而异。
Resumo:
Noble metal composite nanoparticles, as attractive building blocks of advanced functional materials, have received enormous attentions due to their specific optical, electronic and catalytic properties that are distant from those of the corresponding monometal nanoparticles. Such materials have important applications in such areas as sensors, optical materials, catalysis and biology, and developed into an increasingly important research area in nanomaterials science. This article reviews the recent progress in the synthesis, properties, and applications of noble metal composite nanoparticles with core-shell, heterostructure, and alloy structure.
Resumo:
Soluble NdCl3 center dot 3EHOH (2-ethyl hexanol) in hexane combined with AlEt3 is highly active for isoprene polymerization in hexane. The NdCl3 center dot 3EHOH/AlEt3 has higher activity than the typical binary catalyst NdCl3 center dot 3(i)PrOH (isopropanol)/AlEt3 and ternary catalyst NdV3 (neodymium versatate)/AlEt2Cl/Al(i-Bu)(2)H. The molecular weight of polyisoprenes can be controlled by variation of [Nd], [Al]/[Nd] ratio and polymerization temperature and time. The NdCl3 center dot 3EHOH/AlEt3 catalyst polymerized isoprene to afford products featuring high cis-1,4 stereospecificity (ca. 96%), high molecular weight (ca. 10(5)) and relatively narr ow molecular weight distributions (M-w/M-n = 2.0-2.8) simultaneously. More importantly, some living polymerization characteristics were demonstrated: (a) absence of chain termination; (b) linear correlation between M-n and polymer yield; (c) increment of molecular weight in the 'seeding' polymerization. Though some deviation from the typical living polymerization such as molecular weight distribution is not narrow enough and the line of M-n and polymer yield does not extrapolate to zero, controlled polymerization with the current catalyst can still be concluded.
Resumo:
A straightforward combination of the seeding growth method and replacement reaction allowed for the formation of a nanorattle composed of a gold core and Pt/Ag shell. The size, structure, and composition of the Pt/Ag rattle-type nanostructure were confirmed by scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectrometry.
Resumo:
Recently, a novel approach for preparing SERS and SPR substrates was developed, which indicates a potential application in tailoring the interfacial structure of an electrode surface. In this study, (3-mercaptopropyl)trimethoxysilane (MPTMS) was selected as a polymeric adhesive layer, and a low concentration of colloid Au solution was used to achieve a more accurate control over interface morphology at nanoscale dimensions due to slow self-assembling kinetics of gold nanoparticle's. Subsequent seeding growth of these MPTMS-supported submonolayers of gold nanoparticles in Au3+/NH2OH aqueous solution enlarges particle size and eventually results in the generation of conductive gold films (similar to previous (3-aminopropyl)trimethoxysilane-supported gold films). Such tunable interface structure was evaluated by atomic force microscopy (AFM). Also, ac impedance spectroscopy (ACIS) and cyclic voltammograms were performed to evaluate electrochemical properties of the as-prepared interfaces by using Fe(CN)(6) (3-/4-) couples as a probe. Furthermore, relevant theories of microarray electrodes were introduced into this study to explain the highly tunable electrochemical properties of the as-prepared interfaces. As a result, it is concluded that the electrochemical properties toward Fe(CN)(6) (3-/4-) couples are highly dependent on the active nanoelectrode (nanoparticles) area fraction and nanoparticles are fine-tuners of interfacial properties because the number density. (numbers/unit area) and size of nanoparticles are highly tunable by self-assembling and seeding growth time scale control. This is in agreement with the theoretical expectations for a microarray electrode if a single nanoparticle tethered to a blocking SAM is taken as a nanoelectrode and 2-D nanoparticle assemblies are taken as nanoelectrode arrays.
Resumo:
A perfect single crystal of nylon-2,14 was prepared from 0.02% (w/v) 1,4-butanediol solution by a "self-seeding" technique and isothermal crystallization at 120 and 145 degreesC. The morphology and structure features were examined by transmission electron microscopy with both image and diffraction modes, atomic force microscopy, and wide-angle X-ray diffraction (WAXD). The nylon-2,14 single crystal grown from 1,4-butanediol at 145 degreesC inhabited a lathlike shape with a lamellar thickness of about 9 nm. Electron diffraction and WAXD data indicated that nylon-2,14 crystallized in a triclinic system with lattice dimensions a = 0.49 nm, b = 0.51 nm, c = 2.23 nm, alpha = 60.4degrees, beta = 77degrees, and gamma = 59degrees. The crystal structure is different from that of nylon-6,6 but similar to that of other members of nylon-2Y.
Resumo:
Large, monodisperse core-shell Au-Ag nanoparticles with Ag-like optical properties have been prepared by the seeding growth method in micellar media.
Resumo:
The effects of self-seeding nucleation on the crystallization behavior and properties of polypropylene (iPP) were studied. DSC results indicated that the crystallization temperature of iPP increased obviously after the process of self-seeding nucleation. The results of polarized fight microscopy showed that the spherulite size decreased markedly, as a result, the mechanical properties and the transparency of iPP were all improved.
Resumo:
FUNCTIONAL-FORM GROUPS; RED ALGAE; ATLANTIC SALMON; NEW-HAMPSHIRE; NITROGEN; PHOSPHORUS; RHODOPHYTA; TEMPERATURE; NUTRIENTS; KJELLMAN