757 resultados para prerequisite
Resumo:
We study the effect of an external biaxial stress on the light emission of single InGaAs/GaAs(001) quantum dots placed onto piezoelectric actuators. With increasing compression, the emission blueshifts and the binding energies of the positive trion (X+) and biexciton (XX) relative to the neutral exciton (X) show a monotonic increase. This phenomenon is mainly ascribed to changes in electron and hole localization and it provides a robust method to achieve color coincidence in the emission of X and XX, which is a prerequisite for the possible generation of entangled photon pairs via the recently proposed "time reordering'' scheme.
Resumo:
研究了黄土沟壑区小流域塬面、坡地、梯田和沟道土壤微量元素的剖面分布特征,以揭示不同地形条件下微量元素的有效性及地球化学特性.结果表明,不同土层土壤全量微量元素的变异系数均小于15%,为小变异土壤性质,有效态和吸附态铁和锰的变异系数均高于36%,为高度变异土壤性质;有效态和吸附态锌和铜属于中到高度变异.全量铁、锰和铜以沟道土壤较高,全锌、有效态和吸附态微量元素含量以塬面土壤较高.不同形态微量元素的剖面分布趋势取决于地形条件.不同地形下成土过程及不同地形条件所对应的土地利用方式造成了全量微量元素的差异,而土壤有机质含量的差异是不同地形条件下有效态和吸附态微量元素剖面分布特征不同的主要原因.
Resumo:
手性胺是合成天然产物和手性药物的重要中间体,亚胺的不对称催化还原是制备光学活性手性胺的最直接有效的方法之一。但是,由于C=N双键的反应活性较弱以及容易发生E/Z异构等问题,亚胺的不对称催化还原具有很大的挑战性,既具有高对映选择性又具有宽广底物普适性的催化剂很少。 本文分别由手性脯氨酸、哌啶酸、哌嗪酸以及氨基醇出发,设计和合成了一系列结构新颖、合成简便、性能优良的酰胺类有机小分子路易斯碱催化剂,以廉价的三氯氢硅为氢源,用这些催化剂催化亚胺不对称还原,得到了非常优良的收率、对映选择性和前所未有的底物普适性。 文献研究认为,除N-甲酰基外,分子内含有芳香酰胺是能催化亚胺还原的有机小分子路易斯碱催化剂具有较高对映选择性的必要条件,我们研究发现N-甲酰脯氨酸非芳香酰胺类催化剂(包括结构简单的C2-对称型脯氨酰胺类催化剂),对N-芳基酮亚胺的还原可获得达86%的对映选择性,远高于同类芳香酰胺催化剂,证明N-甲酰非芳香酰胺类路易斯碱催化剂在亚胺还原中也能得到高的对映选择性。 在进一步研究中,我们以手性六元哌啶酸为模板,分别设计合成了N-甲酰哌啶酸芳香酰胺和N-甲酰哌啶酸非芳香酰胺两类催化剂,其中芳香酰胺催化剂(S)-N-(甲酰基)哌啶-2-酸-1-萘基酰胺(28)和非芳香酰胺催化剂(2S,1'S,2'S)-N-(甲酰基)-哌啶-2-酸(1',2'-二苯基-2'-乙酰氧基-乙基)酰胺(30)显示出非常优良的催化活性和对映选择性,对于N-芳基芳香酮亚胺的还原,无论是缺电子体系还是富电子体系,绝大部分都能得到很高的收率(达98%)和对映选择性(达96% ee)。特别值得一提的是30对一些脂肪族亚胺和α,β-不饱和亚胺的还原,虽然底物为E/Z混合物,也能得到很高的收率(达93%)和对映选择性(达95% ee),这样的底物普适性在过渡金属催化体系中也是前所未有的。 现有的催化亚胺还原的高对映选择性催化体系大多仅适用于甲基酮亚胺底物,对位阻较大的非甲基酮亚胺很难获得好的结果。我们以L-哌嗪酸为模板设计和合成出的(S)-N-(甲酰基)-哌嗪-2-酸-4-对叔丁基苯磺酰基-苯基酰胺不但对N-芳基甲基酮亚胺有很好的对映选择性(达90% ee),而且对于大位阻的N-芳基非甲基酮亚胺有更好的对映选择性(达97% ee)。该催化剂与30在底物普适性方面具有很好的互补性。 我们还设计了基于1,2-二苯基氨基醇为模板的新型N-甲酰路易斯碱有机小分子催化剂,首次发现结构简单的N-甲酰(1S,2R)二苯基氨基醇能较好的催化N-芳基酮亚胺,最高可以得到82%的对映选择性。 针对我们设计合成的结构新颖、性能优良的催化剂,我们对催化机理进行了探讨和解释,提出了几个假想的机理模型。 Catalytic enantioselective reduction of imines represents one of the most straightforward and efficient methods for the preparation of chiral amines, an important intermediate for the synthesis of natural products and chiral drugs. However, asymmetric reduction of imines remains a big challenge and highly enantioselective catalysts with a satisfactorily broad substrate scope remain elusive. Factors contributing to the difficulty of this transformation include the weak reactivity of the C=N bond and the existence of inseparable mixtures of E/Z isomers. Starting from chiral proline, pipecolinic acid, piperazine-2-carboxylic acid and 1,2-diphenyl amino alcohol, a series of structurally simple and easily prepared amides were developed as highly effective Lewis basic organocatalysts for the asymmetric reduction of imines with trichlorosilane as the reducing agent, which promoted the reduction of N-aryl imines with high yields and excellent enantioselectivities with an unprecedented substrate spectrum. In the literature, it has been believed that besides the N-formyl group, the existence of an arylamido group in the structure of Lewis basic organocatalysts is a prerequisite for obtaining high enantioselectivity in the catalytic reduction of imines. However, we found that the N-formyl-L-prolinamides bearing non-arylamido groups, including structurally simple C2-symmetric tetraamides, could also work as effective Lewis basic catalysts to promote the asymmetric reduction of ketimines with high enantioselectivities (up to 86% ee), which are even more enantioselective than the analogues with arylamido groups. In further studies, we developed novel N-formamides with arylamido groups and non-arylmido groups as Lewis basic catalysts using the commercially available L-pipecolinic acid as the template. The catalysts (S)-1-formyl-piperidine-2-carboxylic acid naphthylamide 28 and (2S,1'S,2'S)-acetic acid 2-[(1-formyl-piperidine-2-carbonyl) -amino]-1,2-diphenyl-ethyl ester 30 were found to promote the reduction of a broad range of N-aryl imines in high yields (up to 98%) and excellent ee values (up to 96%) under mild conditions. Furthermore, catalyst 30 also exhibited high enantioselectivities (up to 95% ee) for the challenging aliphatic ketimines and α,β-unsaturated imines despite that these imines exist as E/Z isomeric mixtures. The broad substrate spectrum of this catalyst is unprecedented in catalytic asymmetric imine reduction, including transition-metal-catalyzed hydrogenation processes. Many of the currently available highly enantioselective catalytic systems only tolerate methyl ketimines, which gave poor results for bulkier non-methyl ketimines. Starting from L-piperazine-2-carboxylic acid, we developed (S)-4-(4-tert- butylbenzenesulfonyl)-1-formyl-N-phenyl-piperazine-2-carboxamide as highly enantioselective Lewis basic catalysts for the hydrosilylation of both methyl ketimines and steric bulky non-methyl ketimines. Moreover, higher enantioselectivities were obtained for non-methyl ketimines than methyl ketimines under the catalysis of this catalyst. Thus, this catalyst system complements with 30 in terms of the substrate scope. We also found that easily accessible (1R,2S)-N-formyl-1,2-diphenyl- 2-aminoethanol worked as an effective Lewis basic catalyst in the enantioselective hydrosilylation of ketimines, affording high enantioselectivities (up to 82% ee) for a broad range of ketimines. To rationalize the high efficiencies of the structurally novel catalysts we developed, several catalytic models have been proposed.
Resumo:
水稻是重要的粮食作物,其产量的增加和品质的改良都是关系国计民生的大事。就我国现阶段的国情而言,水稻产量在现有水平上稳步提升仍是未来十几年甚至几十年农业生产最重要的目标之一。尽管根据“超级杂交水稻育种”的战略设想和水稻育种实践,通过不断地改进育种技术可望在更高的产量水平上进行水稻杂种优势利用,在稻属植物内还具有很大的产量潜力可以挖掘。然而,仅仅从现有的种质基础出发,要更大幅度提高水稻单产,实现“超级杂交稻”的目标也存在一些困难:现有的推广品种是二倍体,尽管种类众多,但是其基因组的来源相对单一;同时,水稻基因组DNA含量也是作物中最少的,基因组内寻求开发潜力有一定困难;水稻作为C3植物,光合利用效率不高也是制约水稻产量提高的因素之一。因此,寻求常规手段以外的技术突破或者方法创新,是实现“超级杂交稻”的目标的迫切需求。本研究利用秋水仙素能抑制细胞分裂中纺锤丝的收缩、使细胞染色体加倍的作用,对水稻幼穗诱导的愈伤组织细胞进行加倍,并分化出再生植株;创制出水稻同源四倍体新的种质材料,在此基础上选育水稻同源四倍体雄性不育三系材料,并实现水稻同源四倍体的三系配套,开展水稻同源四倍体杂种优势利用和四倍体杂交水稻选育研究,建立水稻同源四倍体杂种优势利用的新技术体系。这不仅有助于倍性水平杂种优势的开拓和利用,同时也将为我国新世纪“超级稻”育种研究开辟一条新的技术途径。 水稻幼穗诱导愈伤组织并分化成苗是一项成熟、简单的组织培养技术。本研究以普通二倍体水稻亲本为材料,用秋水仙素进行水稻的多倍体化诱导,创制同源四倍体水稻三系亲本材料并对其进行鉴定。多倍体化以秋水仙素诱导的愈伤组织培养为基础,研究不同秋水仙素浓度梯度和愈伤组织诱导培养基组合对诱导四倍体植株的影响。结果表明在MS+2,4 D 1.0mg/L+ KT0.2mg/L+ IAA0.2mg/L 和500mg/L的秋水仙素处理下,水稻愈伤组织染色体加倍(有最高的效率)效果较好,平均加倍频率可达25.26%,其中,材料CDR22和IR26诱导较易成功,加倍频率分别达到75%和26.5%;相对材料94109 1.3%加倍频率和冈46B 10.8%加倍频率,诱导率差异极显著。 对水稻四倍体材料进行了形态学鉴定结果表明,与二倍体水稻对照相比其株高、穗长、花粉育性等主要农艺性状,确定四倍体材料在穗长和千粒重两方面极显著提高,种子的长度和宽度也显著增长。对花粉育性鉴定,确认水稻四倍体不育系材料仍为不育,保持系材料自交和杂交可育,恢复系材料自交和杂交可育。对四倍体材料进行细胞形态、染色体数目等方面进行细胞学鉴定,经核型分析表明水稻四倍体材料具有48条染色体,是二倍体水稻的两倍。水稻四倍体材料根尖分生组织细胞与二倍体的根尖分生组织细胞相比,细胞体积、细胞核和核仁显著增大。四倍体三系材料在细胞有丝分裂中期均可规则排列在赤道板,并能均等地移向两极;后期观察中没有发现染色体分离滞后现象,分裂末期细胞能够形成大小相对均一的子细胞。水稻同源四倍体三系材料细胞分裂未见异常,植株生长发育正常。 从1996年至2006年,针对结实率、有效分蘖、着粒数和穗长等主要农艺性状,通过系谱选育的方法,对培育的同源四倍体水稻亲本材料进行了连续选择和改良,取得较好成效。表现为结实率的改良效果极佳,所有改良材料的平均结实率均呈上升趋势,如D237(29.70%→72.70%)、DTB(19.55%→53.21%)等。有效分蘖总体呈现上升趋势,但在不同的年份,如1998和2002存在较大的负向波动。部分材料改良效果明显,如D19B(5.87→13.50)、D什香 (7.00→12.00)等;同时一些材料如DTB和D明恢63虽然总体略有提高,但在不同的年份波动很大,因此存在较大改良阻力,原因还有待进一步研究。着粒数的改良上升趋势比较显著,除保持系的DTB之外,其余材料的平均着粒数有显著提高。穗长的改良阻力较大,虽然不同材料总体上有所提高,但效果并不显著,并且不同年份有较大负向波动(2001)。此外还对株高、剑叶长等性状也进行了选择,但效果不显著,原因有待进一步提高。同源四倍体材料产量相关性状遗传改良幅度不一致,保持系和恢复系间的遗传改良效果也存在差异。这为同源四倍体水稻的进一步利用打下了良好的基础。 籼稻和粳稻亚种间杂交及杂种优势利用的主要障碍就是其低的结实率。而同源四倍体杂交水稻的研究为提高杂交水稻的杂种优势利用创造了新的途径。本研究通过随机区组设计方案,挑选性状优良的二倍体水稻材料,包括雄性不育系,保持系和恢复系进行秋水仙素诱导加倍,从而获得同源四倍体水稻对应的三系材料。利用选育的优良水稻同源四倍体三系材料,配制7个杂交组合,杂交F1代与其恢复系亲本进行比较,用于计算超亲优势(HB);而杂交F1代与生产上大面积推广的二倍体杂交品种汕优63进行比较,用于计算杂种优势。结果显示,同源四倍体杂交水稻的超亲优势表现为:每株有效穗变化幅度为1.4%至105.9%,总粒数为0.5%至74.3%,每穗实粒数为17.6%至255.7%,结实率为9.6%至130.4%。这些农艺性状的改良使得这7个杂种F1的理论产量的超亲优势高达64.8%至672.7%。小区试验中四倍体杂交水稻组合T461A/T4002和T461A/T4193分别比二倍体对照汕优63提高46.3%和38.3%以上,除一个品种以外所有品种产量均接近或高于汕优63的产量。同源四倍体水稻强大的杂种优势表明,亚种间杂交育性低的问题可通过四倍体化及强化选择来解决。此外,同源四倍体杂交水稻器官的巨大性也是其产量提高的有利因素,水稻同源四倍体三系杂种优势利用研究具有一定的理论价值和商业生产潜力。 Rice is one of the major food crops, the improvement of the production and quality of it is an important thing related to the people's livelihood. On China's current national conditions, steadily increase of the rice yield based on the current level is still one of the most important goals in the next decade or even decades of agricultural production. According to the "super hybrid rice breeding" the strategic and rice breeding practice, improvement of the use of hybrid rice heterosis through continuous improvements in breeding technology is expected to get a higher level of rice yield, there are also a great yield potential can be exploited. However, there are also some difficulties to increase rice yield obviously and implement the goal of "super hybrid rice" based on the existing germplasm: Rice varieties in promotion are diploid, although there are many varieties, but their genome are from a comparatively single source; Meanwhile, the rice genome DNA are the least among the crops, it is difficult to exploit the development potential within the genome; Rice as C3 plants, photosynthetic efficiency is not high, it is one of the factors constraint rice yield. Therefore, seeking technological breakthroughs or innovative methods different from conventional means is the urgent needs to reach the target of "super hybrid rice". Using colchicine inhibit spindle contraction during cell division, double the cell chromosome, we induced callus cells from rice panicle to be doubled, and differentiated regeneration; we created a new autotetraploid rice germplasm material, and on that basis we bred male sterility three line autotetraploid rice materials, and the achieved the three line rice autotetraploid matchmaking, researched in autotetraploid rice heterosis usage and tetraploid hybrid rice breeding, constituted a new technology system of autotetraploid hybrid rice heterosis utilization. This not only helps the tetraploid rice heterosis exploration and use, but also inaugurates a new technical means for China in the new century "super rice" breeding research. We chose ordinary diploid rice as materials, using colchicine to induce the polyploidization, created the autotetraploid rice three-line materials and identified them. The polyploidization was based on the colchicine-induced callus tissue culture, and we experimented different colchicine concentrations and culture mediums to induce tetraploid plants, confirmed that the optimal concentration for inducement was 500 mg/L, the average induce rate was 25.26 %. Among all the materials, CDR22 and IR26 had higher induced rate; in contrary, 94109 and GANG46B had lower induced rate, the difference was significant. Autotetraploid materials was identified of both morphological and cytological, compared plant height, length of pollen sterility, and other major agronomic traits with a diploid rice as the control plant, identified that the autotetraploid materials had very significant advantages in ear length and thousand-grain weight, as well as the size of the seeds. Cytology identification included observation of the cell morphology, the number of chromosomes, and karyotype analysis on the autotetraploid materials confirmed that their chromosome number was 48, twice of the diploid rice. Mitoses in the three lines were common: chromosomes arrayed normally in metaphase and separated balanced into the two poles, chromosome moved without lagging in anaphase and daughter cells normally formed in telophase except one. It has been proved that tetraploid rice has normal meiosis as their diploid relatives, which usually including series of sub-phases as interphase, prophase I (five sub-phases), prophase II, metaphase I, II, anaphase I, II and telophase I, II. However, abnormal phenomena, such as formation of tetravalent, trivalent and univalent, chromosome lagging and so on, which would finally block meiosis. Configurations of chromosome in metaphaseⅠwere versatile in structure and form accept the bivalent. That condition varied in different strain, suggesting more complex paring configurations and more versatile genetic characters in tetraploid rice. All these abnormalities in meiosis contributed to low fertility of gamete and might consequently resulted in low seed setting. Successive selection and improvement on seed set, productive tiller per plant, total grains per panicle, panicle length and so on had been carried out from 1996 to 2006. The raise of seed sets was significant in both restorers and maintainers. Seed sets of some strains were improved more significantly than others, for example D237(29.70%→72.70%)、DTB(19.55%→53.21%)and et al.. Productive tiller per plant was improved to some extant. The tendency of improvement was rising on the whole but changed in some years such as 1998 and 2002. Part of the stains increased greatly, such as D19B(5.87→13.50)、Dshixiang (7.00→12.00) and so on, but some strains including DTB and Dminghui63 only increased little and decreased in some years by unknown reason. Total grains per panicle increased significantly and all strains except DTB increased. Improvement of panicle length termed to be hard. Different strains showed different capacities for improvement and floating existed in different years for example 2001. It has been proved that other agronomical traits including plant length, flag leaf length and so on could be improved but not significantly by selection also. In a word, agronomical traits could be raised by successive selection that is prerequisite for further utility of autotetraploid rice. Poor fertility is the main barrier for utilizing heterosis between the two rice (Oryza stiva L.) sub-species, indica and japonica. Recently, the development of autotetraploid hybrids (2n=4x=48) has been suggested as a new method for increasing heterosis in hybrid rice. Using standard experimental protocols, the elite diploid rice male sterile, maintainer, and restorer lines were colchine-doubled and autotetraploid counterparts were obtained. Seven resulting hybrids were analyzed for heterobeltiosis (HB), where the F1 was compared to the male parent, and the degree of heterosis, where the F1 was compared to the diploid commercial hybrid, Shanyou 63. The HB among the autotetraploid hybrids ranged from 1.4 to 105.9% for the productive panicles per plant, 0.5 to 74.3% for total kernels per panicle, 17.6 to 255.7% for filled kernels per panicle, and 9.6 to 130.4% for seed set. Improvements in these yield components resulted in the HB for kernel yield ranging from 64.8 to 672.7% among the seven hybrids. Hybrids T461A/T4002 and T461A/T4193 yielded 46.3 and 38.3% more, respectively than Shanyou 63, and all other hybrids but one yielded the same or more than Shanyou 63. The high heterosis for yield suggests that hybrid sterility between two rice sub-species may be overcome by using tetraploid lines followed by intensive selection. Also, the gigantic features of the autotetraploid hybrids may establish a plant structure able to support the higher yield.
Resumo:
Serious concerns have been raised about the ecological effects of industrialized fishing1, 2, 3, spurring a United Nations resolution on restoring fisheries and marine ecosystems to healthy levels4. However, a prerequisite for restoration is a general understanding of the composition and abundance of unexploited fish communities, relative to contemporary ones. We constructed trajectories of community biomass and composition of large predatory fishes in four continental shelf and nine oceanic systems, using all available data from the beginning of exploitation. Industrialized fisheries typically reduced community biomass by 80% within 15 years of exploitation. Compensatory increases in fast-growing species were observed, but often reversed within a decade. Using a meta-analytic approach, we estimate that large predatory fish biomass today is only about 10% of pre-industrial levels. We conclude that declines of large predators in coastal regions5 have extended throughout the global ocean, with potentially serious consequences for ecosystems5, 6, 7. Our analysis suggests that management based on recent data alone may be misleading, and provides minimum estimates for unexploited communities, which could serve as the ‘missing baseline’8 needed for future restoration efforts.
Resumo:
地形条件是影响黄土高原地区土壤性质分布的主要因素,研究不同地形条件下土壤性质的分布是合理评价黄土区土壤质量状况的重要前提。论文研究了黄土高原沟壑区小流域地形条件对土壤性质剖面分布的影响,结果表明土壤硝态氮、速效磷、碱性磷酸酶和蔗糖酶为高度变异的土壤性质;pH值和过氧化氢酶为小变异土壤性质。塬面和沟道土壤pH值和过氧化氢酶活性较低,阳离子交换量较高。土壤有机质、全氮、全磷、速效磷、碱性磷酸酶和蔗糖酶活性在土壤剖面随土层深度的增加逐渐降低,且均表现为塬面>梯田>坡地>沟道的趋势。不同地形条件下土壤pH值的变化由地形条件引起的土壤过程及硝态氮在土壤中的累积引起;阳离子交换量的变化由成土过程、pH值和有机质的差异引起;土壤有机质及氮、磷养分的差异由与地形条件对应的土地利用方式引起;土壤酶活性的差异则是有机质的差异引起的。
Resumo:
作为黄土高原半农半牧区重要经济支柱的畜牧业 ,要确保其稳定增长 ,需在提高粮食单产、保障食物安全的前提下 ,保持及改善生态环境 ,通过畜牧业发展农村经济 ,增加农民收入 ,改变农村贫困落后状态。同时畜牧业可持续发展需要经济系统、社会系统、技术系统的共同支撑 ,优化协调畜牧业生产中的外部条件和环境 ,配套解决和优化畜牧业系统内部矛盾是畜牧业可持续发展的必经之路
Resumo:
"Fluidic leakage" caused by vacuum force at the reversible sealing poly(dimethylsiloxane) (PDMS) interfaces was converted to one useable avenue, which led to formation of highly ordered surfactant microdroplets functionalized with ionic liquids (ILs). Vacuum force is the prerequisite to lead constant microsolutions to diffuse to the PDMS interfaces. Imidazolium ions of ILs rendered structural rearrangement of the surfactant aggregates and the ordered droplets formation.
Resumo:
By utilizing 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline:Li/MoO3 as an effective charge generation layer (CGL), we extend our recently demonstrated single-emitting-layer white organic light-emitting diode (WOLED) to realize an extremely high-efficiency tandem WOLED. This stacked device achieves maximum forward viewing current efficiency of 110.9 cd/A and external quantum efficiency of 43.3% at 1 mu A/cm(2) and emits stable white light with Commission Internationale de L'Eclairage coordinates of (0.34, 0.41) at 16 V. It is noted that the combination of effective single units and CGL is key prerequisite for realizing high-performance tandem WOLEDs.
Resumo:
The aim of this work is to study the effect of Sr substitution on the redox properties and catalytic activity of La2-xSrxNiO4 (x = 0.0-1.2) for NO decomposition. Results suggest that the x = 0.6 sample shows the highest activity. The characterization (TPD, TPR, etc.) of samples indicates that the x = 0.6 sample possesses suitable abilities in both oxidation and reduction, which facilitates the proceeding of oxygen desorption and NO adsorption. At temperature below 700 degrees C, the oxygen desorption is difficult, and is the rate-determining step of NO decomposition. With the increase of reaction temperature (T > 700 degrees C), the oxygen desorption is favorable and, the active adsorption of NO on the active site (NO + V-o + Ni2+ -> NO--Ni3+) turns out to be the rate-determining step. The existence of oxygen vacancy is the prerequisite condition for NO decomposition, but its quantity does not relate much to the activity.
Resumo:
Three series of MBS core-shell impact modifiers were prepared by grafting styrene and methyl methacrylate onto PB or SBR seed latex in emulsion polymerization. All the MBS modifiers were designed to have the same total chemical composition, and MMA/Bd/St equals 30/42/28, which is a prerequisite for producing transparent blends with PVC. Under this composition, there were three different ways of arrangement for styrene in MBS, which led to the different structure of MBS modifier. The concentration of MBS in PVC/MBS blends was kept at a constant value of 20 wt.%. The effects of arrangement of St in MBS on the mechanical and optical properties of PVC/MBS blends were studied. The notched Izod impact test results showed that the MBS with a PB homopolymer core grafted with St had a lowest brittle-ductile transition (BDT) temperature and BDT temperature increased with the amount of St copolymerized with Bd in the core of MBS. The transparency of blends also increased with the amount of St copolymerized with Bd in the core. TEM results showed that the arrangement of St in MBS influenced the deformation behavior. Two deformation modes were observed in the blends: cavitation and shear yielding.
Resumo:
Two hot spots in marine ecology, deleterious effects of diatoms and feeding selectivity of copepods, as well as new progress on these two issues achieved in the recent ten years, are reviewed. These two issues are considered correlated closely. Diatoms and their metabolites can induce deleterious effects on growth, reproduction and development of copepods, including increase of mortality and decrease of egg production, hatching and growth rates. Such negative effects, resulting from either chemical toxin or nutritional deficiency, can be conquered in natural environments by diverse feeding. It is therefore concluded that deleterious effects of diatoms observed in laboratory or during blooming period are only a special case that accommodation of feeding strategy of copepods is disabled. To understand their feeding strategy in natural environments is a prerequisite to explaining the mechanisms of deleterious effects caused by diatoms, and makes it possible to re-evaluate the energy flow in marine ecosystems.
Resumo:
在核酸扩增反应仪中,基因芯片核酸扩增反应过程要求实现温度高精度快速跟踪控制,常规温控方案和算法难以实现。将模糊推理系统与常规PID控制方式相结合,采用模糊自整定PID控制算法实现了温度快速跟踪控制。实验结果表明:模糊自整定PID控制算法比常规PID算法具有更强的鲁棒性,能够克服控制对象热惯性参数时变性的影响,降低了输出温度最大超调量,提高了稳态精度。
Resumo:
在基因芯片分析系统中,基因芯片荧光靶点图像的正确检测识别是基因特异性表达信息提取的必要前提。在荧光靶点检测识别过程中,由于沾污、瑕疵、离焦等因素的影响,荧光靶点图像的信噪比很低,很容易将污点、基片瑕疵等噪声点误识别为荧光靶点,而将沾污的荧光靶点误识别为噪声点。在原算法基础上,为进一步降低误识别率和提高检测精度,提出基于靶点分割图像重心和目标背景面积比的改进的荧光靶点检测识别算法。实验结果表明,与原算法相比,采用新算法将正确识别率提高到90%以上。
Resumo:
In recent years, chimney structure has been proved one of important indicators and a useful guide to major petroleum fields exploration through their exploration history both at home and abroad. Chimney structure, which has been called "gas chimney" or "seismic chimney", is the special fluid-filled fracture swarm, which results from the boiling of active thermal fluid caused by abruptly decreasing of high pressure and high temperature in sedimentary layers of upper lithosphere. Chimney structure is well developed in continental shelf basin of East China Sea, which indicates the great perspectives of petroleum resources there. However, the chimney structure also complicated the petroleum accumulation. So the study of chimney structure on its formation, its effect on occurrence and distribution of petroleum fields is very important not only on theoretical, but also on its applied research. It is for the first time to make a clear definition of chimney structure in this paper, and the existence and practical meaning of chimney structure are illustrated. Firstly, on the viewpoint of exploration, this will amplify exploration area or field, not only in marine, but also on continent. Secondly, this is very important to step-by-step exploration and development of petroleum fields with overpressure. Thirdly, this will provide reference for the study on complex petroleum system with multi-sources, commingled sources and accumulation, multi-stage accumulations, and multi-suits petroleum system in the overlay basin. Fourthly, when the thermal fluid enters the oceanic shallow layer, it can help form gas hydrate under favorable low-temperature and high-pressure conditions. Meanwhile, the thermal fluid with its particular component and thermal content will affect the physical, chemical and ecological environments, which will help solving the problem of global resources and environment. Beginning from the regional tectonic evolution characteristics, this paper discussed the tectonic evolution history of the Taibei depression, then made an dynamical analysis of the tectonic-sedimentary evolution during the Mesozoic and Cenozoic for the East China Sea basin. A numerical model of the tectonic-thermal evolution of the basin via the Basin-Mod technique was carried out and the subsidence-buried history and thermal history of the Taibei depression were inverse calculated: it had undergone a early rapid rift and sag, then three times of uplift and erosion, and finally depressed and been buried. The Taibei depression contains a huge thick clastic sedimentary rock of marine facies, transitional facies and continental facies on the complex basement of ante-Jurassic. It is a part of the back-arc rifting basins occurred during the Mesozoic and Cenozoic. The author analyzed the diagenesis and thermal fluid evolution of this area via the observation of cathodoluminescence, scanning electron microscope and thin section, taking advantage of the evidences of magma activities, paleo-geothermics and structural movement, the author concluded that there were at least three tectonic-thermal events and three epochs of thermal-fluid activities; and the three epochs of thermal-fluid activities were directly relative to the first two tectonic-thermal events and were controlled by the generation and expulsion of hydrocarbon in the source rock simultaneously. Based on these, this paper established the corresponding model between the tectonic-thermal events and the thermal-fluid evolution of the Taibei Depression, which becomes the base for the study on the chimney structures. According to the analyses of the gas-isotope, LAM spectrum component of fluid inclusion, geneses of CO_2 components and geneses of hydrocarbon gases, the author preliminarily verified four sources of the thermal fluid in the Taibei Depression: ① dehydration of mud shale compaction, ② expulsion of hydrocarbon in the source rock; ③ CO_2 gas hydro-thermal decomposition of carbonatite; ④magma-derived thermal fluid including the mantle magma water and volatile components (such as H_2O, CO_2, H_2S, SO_2, N_2 and He etc.). On the basis of the vitrinite reflectance (Ro), homogenization temperature of fluid inclusion, interval transit time of major well-logging, mud density of the wells, measured pressure data and the results of previous studies, this paper analyzed the characteristics of the geothermal fields and geo-pressure fields for the various parts in this area, and discussed the transversal distribution of fluid pressure. The Taibei depression on the whole underwent a temperature-loss process from hot basin to cold basin; and locally high thermal anomalies occurred on the regional background of moderate thermal structure. The seal was primarily formed during the middle and late Paleocene. The overpressured system was formed during the middle and late Eocene. The formation of overpressured system in Lishui Sag underwent such an evolutionary process as "form-weaken-strengthen-weaken". Namely, it was formed during the middle and late Eocene, then was weakened in the Oligocene, even partly broken, then strengthened after the Miocene, and finally weakened. The existence of the thermal fluid rich in volatile gas is a physical foundation for the boiling of the fluid, and sharply pressure depletion was the major cause for the boiling of the fluid, which suggests that there exists the condition for thermal fluid to boil. According to the results of the photoelastic simulation and similarity physical experiments, the geological condition and the formation mechanism of chimnestructures are summarized: well compartment is the prerequisite for chimney formation; the boiling of active thermal fluid is the original physical condition for chimney formation; The local place with low stress by tension fault is easy for chimney formation; The way that thermal fluid migrates is one of the important factors which control the types of chimney structures. Based on where the thermal fluid come from and geometrical characteristics of the chimney structures, this paper classified the genetic types of chimney structures, and concluded that there existed three types and six subtypes chimney structures: organic chimney structures generated by the hydrocarbon-bearing thermal fluid in middle-shallow layers, inorganic and commingling-genetic chimney structures generated by thermal fluid in middle-deep layers. According to the seismic profiles interpretations, well logging response analysis and mineralogical and petrological characteristics in the study area, the author summarized the comprehensive identification marks for chimney structures. Especially the horizon velocity analysis method that is established in this paper and takes advantage of interval velocity anomaly is a semi-quantitative and reliable method of chimney structure s identification. It was pointed out in this paper that the occurrence of the chimney structures in the Taibei depression made the mechanism of accumulation complicated. The author provided proof of episodic accumulation of hydrocarbon in this area: The organic component in the boiling inclusion is the trail of petroleum migration, showing the causality between the boiling of thermal fluid and the chimney structures, meanwhile showing the paroxysmal accumulation is an important petroleum accumulation model. Based on the evolutionary characteristics of various types of chimney structures, this paper discussed their relationships with the migration-accumulation of petroleum respectively. At the same time, the author summarized the accumulating-dynamical models associated with chimney structures. The author analyzed such accumulation mechanisms as the facies state, direction, power of petroleum migration, the conditions of trap, the accumulation, leakage and reservation of petroleum, and the distribution rule of petroleum. The author also provides explanation for such practical problems the existence of a lot of mantle-derived CO_2, and its heterogeneous distribution on plane. By study on and recognition for chimney structure, the existence and distribution of much mantle-derived CO_2 found in this area are explained. Caused by tectonic thermal activities, the deep magma with much CO_2-bearing thermal fluid migrate upward along deep fault and chimney structures, which makes two wells within relatively short distance different gas composition, such as in well LF-1 and well LS36-1-1. Meanwhile, the author predicted the distribution of petroleum accumulation belt in middle-shallow layer for this area, pointed out the three favorable exploration areas in future, and provided the scientific and deciding references for future study on the commingling-genetic accumulation of petroleum in middle-deep layer and the new energy-gas hydrate.