939 resultados para mathematics curriculum
Resumo:
Climbing Mountains, Building Bridges is a rich theme for exploring some of the “challenges, obstacles, links, and connections” facing mathematics education within the current STEM climate (Science, Technology, Engineering and Mathematics). This paper first considers some of the issues and debates surrounding the nature of STEM education, including perspectives on its interdisciplinary nature. It is next argued that mathematics is in danger of being overshadowed, in particular by science, in the global urgency to advance STEM competencies in schools and the workforce. Some suggestions are offered for lifting the profile of mathematics education within an integrated STEM context, with examples drawn from modelling with data in the sixth grade.
Resumo:
"This third edition ofthe Handbook of International Research in Mathematics Education provides a comprehensive overview of the most recent theoretical and practical developments in the field of mathematics education. Authored by an array of internationally recognized scholars and edited by Lyn English and David Kirshner, this collection brings together overviews and advances in mathematics education research spanning established and emerging topics, diverse workplace and school environments, and globally representative research priorities. New perspectives are presented on a range of critical topics including embodied learning, the theory-practice divide, new developments in the early years, educating future mathematics education professors, problem solving in a 21st century curriculum, culture and mathematics learning, complex systems, critical analysis of design-based research, multimodal technologies, and e-textbooks. Comprised of 12 revised and 17 new chapters, this edition extends the Handbook’s original themes for international research in mathematics education and remains in the process a definitive resource for the field."--Publisher website
Resumo:
The Australian Curriculum identified seven General Capabilities, including numeracy, to be embedded in all learning areas. However, it has been left to individual schools to manage this. Whilst there is a growing body of literature about pedagogies that embed numeracy in various learning areas, there are few studies from the management perspective. A social constructivist perspective and a multiple case study approach were used to explore the actions of school managers and mathematics teachers in three Queensland secondary schools, in order to investigate how they meet the Australian Curriculum requirement to embed numeracy throughout the curriculum. The study found a lack of coordinated cross-curricular approaches to numeracy in any of the schools studied. It illustrates the difficulties that arise when teachers do not share the Australian Curriculum cross-curricular vision of numeracy. Schools and curriculum authorities have not acknowledged the challenges for teachers in implementing cross-curricular numeracy, which include: limited understanding of numeracy; a lack of commitment; and inadequate skills. Successful embedding of numeracy in all learning areas requires: the commitment and support of school leaders, a review of school curriculum documents and pedagogical practices, professional development of teachers, and adequate funding to support these activities.
Resumo:
This is presentation of the refereed paper accepted for the Conferences' proceedings. The presentation was given on Tuesday, 1 December 2015.
Resumo:
Learning mathematics is a complex and dynamic process. In this paper, the authors adopt a semiotic framework (Yeh & Nason, 2004) and highlight programming as one of the main aspects of the semiosis or meaning-making for the learning of mathematics. During a 10-week teaching experiment, mathematical meaning-making was enriched when primary students wrote Logo programs to create 3D virtual worlds. The analysis of results found deep learning in mathematics, as well as in technology and engineering areas. This prompted a rethinking about the nature of learning mathematics and a need to employ and examine a more holistic learning approach for the learning in science, technology, engineering, and mathematics (STEM) areas.
Resumo:
The SiMERR National Survey was one of the first priorities of the National Centre of Science, Information and Communication Technology and Mathematics Education for Rural and Regional Australia (SiMERR Australia), established at the University of New England in July 2004 through a federal government grant. With university based ‘hubs’ in each state and territory, SiMERR Australia aims to support rural and regional teachers, students and communities in improving educational outcomes in these subject areas. The purpose of the survey was to identify the key issues affecting these outcomes. The National Survey makes six substantial contributions to our understanding of issues in rural education. First, it focuses specifically on school science, ICT and mathematics education, rather than on education more generally. Second, it compares the different circumstances and needs of teachers across a nationally agreed geographical framework, and quantifies these differences. Third, it compares the circumstances and needs of teachers in schools with different proportions of Indigenous students. Fourth, it provides greater detail than previous studies on the specific needs of schools and teachers in these subject areas. Fifth, the analyses of teacher ‘needs’ have been controlled for the socio-economic background of school locations, resulting in findings that are more tightly associated with geographic location than with economic circumstances. Finally, most previous reports on rural education in Australia were based upon focus interviews, public submissions or secondary analyses of available data. In contrast, the National Survey has generated a sizable body of original quantitative and qualitative data.
Resumo:
We discuss three approaches to the use of technology as a teaching and learning tool that we are currently implementing for a target group of about one hundred second level engineering mathematics students. Central to these approaches is the underlying theme of motivating relatively poorly motivated students to learn, with the aim of improving learning outcomes. The approaches to be discussed have been used to replace, in part, more traditional mathematics tutorial sessions and lecture presentations. In brief, the first approach involves the application of constructivist thinking in the tertiary education arena, using technology as a computational and visual tool to create motivational knowledge conflicts or crises. The central idea is to model a realistic process of how scientific theory is actually developed, as proposed by Kuhn (1962), in contrast to more standard lecture and tutorial presentations. The second approach involves replacing procedural or algorithmic pencil-and-paper skills-consolidation exercises by software based tasks. Finally, the third approach aims at creating opportunities for higher order thinking via "on-line" exploratory or discovery mode tasks. The latter incorporates the incubation period method, as originally discussed by Rubinstein (1975) and others.
Resumo:
Robotics is taught in many Australian ICT classrooms, in both primary and secondary schools. Robotics activities, including those developed using the LEGO Mindstorms NXT technology, are mathematics-rich and provide a fertile round for learners to develop and extend their mathematical thinking. However, this context for learning mathematics is often under-exploited. In this paper a variant of the model construction sequence (Lesh, Cramer, Doerr, Post, & Zawojewski, 2003) is proposed, with the purpose of explicitly integrating robotics and mathematics teaching and learning. Lesh et al.’s model construction sequence and the model eliciting activities it embeds were initially researched in primary mathematics classrooms and more recently in university engineering courses. The model construction sequence involves learners working collaboratively upon product-focussed tasks, through which they develop and expose their conceptual understanding. The integrating model proposed in this paper has been used to design and analyse a sequence of activities in an Australian Year 4 classroom. In that sequence more traditional classroom learning was complemented by the programming of LEGO-based robots to ‘act out’ the addition and subtraction of simple fractions (tenths) on a number-line. The framework was found to be useful for planning the sequence of learning and, more importantly, provided the participating teacher with the ability to critically reflect upon robotics technology as a tool to scaffold the learning of mathematics.
Resumo:
Drawing on participatory action research, this study identifies the pedagogies necessary to advance reasoning, which is one of the proficiencies from the Australian Curriculum Mathematics, and explores how reasoning leads to greater productive disposition. With the current emphasis on STEM in schools, this research is timely. This thesis makes an original and substantive contribution to the understanding of why and how teachers can most effectively advance student proficiency in reasoning through targeted instructional strategies and style of instruction. The study explores the ways in which teacher practices, when focused on reasoning, enhance the disposition of students towards greater mathematical proficiency.
Resumo:
This thesis traces a genealogy of the discourse of mathematics education reform in Ireland at the beginning of the twenty first century at a time when the hegemonic political discourse is that of neoliberalism. It draws on the work of Michel Foucault to identify the network of power relations involved in the development of a single case of curriculum reform – in this case Project Maths. It identifies the construction of an apparatus within the fields of politics, economics and education, the elements of which include institutions like the OECD and the Government, the bureaucracy, expert groups and special interest groups, the media, the school, the State, state assessment and international assessment. Five major themes in educational reform emerge from the analysis: the arrival of neoliberal governance in Ireland; the triumph of human capital theory as the hegemonic educational philosophy here; the dominant role of OECD/PISA and its values in the mathematics education discourse in Ireland; the fetishisation of western scientific knowledge and knowledge as commodity; and the formation of a new kind of subjectivity, namely the subjectivity of the young person as a form of human-capital-to-be. In particular, it provides a critical analysis of the influence of OECD/PISA on the development of mathematics education policy here – especially on Project Maths curriculum, assessment and pedagogy. It unpacks the arguments in favour of curriculum change and lays bare their ideological foundations. This discourse contextualises educational change as occurring within a rapidly changing economic environment where the concept of the State’s economic aspirations and developments in science, technology and communications are reshaping both the focus of business and the demands being put on education. Within this discourse, education is to be repurposed and its consequences measured against the paradigm of the Knowledge Economy – usually characterised as the inevitable or necessary future of a carefully defined present.
Resumo:
This study describes the performance of the mentors in a blended graduate-level training program of teachers in the field of secondary school mathematics. We codified and analyzed the mentors’ comments on the projects presented by the groups of in-service teachers for whom they (the mentors) were responsible. To do this, we developed a structure of categories and codes based on a combination of a literature review, a model of teacher learning, and a cyclical review of the data. We performed two types of analysis: frequency and cluster. The first analysis permitted us to characterize the common actions shared by most of the mentors. From the second, we established three profiles of the mentors’ actions.
Resumo:
In 2000–2002 an innovative early years curriculum, the Enriched Curriculum (EC), was introduced
into 120 volunteer schools across Northern Ireland, replacing a traditional curriculum similar to
others across the UK at that time. It was intended by the designers to be developmentally appropriate
and play-based with the primary goal of preventing the experience of persistent early failure in
children. The EC was not intended to be a literacy and numeracy intervention, yet it did considerably
alter pedagogy in these domains, particularly the age at which formal reading and mathematics
instruction began. As part of a multi-method evaluation running from 2000–2008, the research
team followed the primary school careers of the first two successive cohorts of EC children, comparing
them with year-ahead controls attending the same 24 schools. Compared to the year-ahead control
group, the findings show that the EC children’s reading and mathematics scores fell behind in
the first two years but the majority of EC children caught up by the end of their fourth year. Thereafter,
the performance of the first EC cohort fell away slightly, while that of the second continued to
match that of controls. Overall, the play-based curriculum had no statistically significant positive
effects on reading and mathematics in the medium term. At best, the EC children’s scores matched
those of controls.
Resumo:
The Organisation for Economic Co-operation and Development investigated numeracy proficiency among adults of working age in 23 countries across the world. Finland had the highest mean numeracy proficiency for people in the 16 – 24 age group while Northern Ireland’s score was below the mean for all the countries. An international collaboration has been undertaken to investigate the prevalence of mathematics within the secondary education systems in Northern Ireland and Finland, to highlight particular issues associated with transition into university and consider whether aspects of the Finnish experience are applicable elsewhere. In both Northern Ireland and Finland, at age 16, about half of school students continue into upper secondary level following their compulsory education. The upper secondary curriculum in Northern Ireland involves a focus on three subjects while Finnish students study a very wide range of subjects with about two-thirds of the courses being compulsory. The number of compulsory courses in maths is proportionally large; this means that all upper secondary pupils in Finland (about 55% of the population) follow a curriculum which has a formal maths content of 8%, at the very minimum. In contrast, recent data have indicated that only about 13% of Northern Ireland school leavers studied mathematics in upper secondary school. The compulsory courses of the advanced maths syllabus in Finland are largely composed of pure maths with a small amount of statistics but no mechanics. They lack some topics (for example, in advanced calculus and numerical methods for integration) which are core in Northern Ireland. This is not surprising given the much broader curriculum within upper secondary education in Finland. In both countries, there is a wide variation in the mathematical skills of school leavers. However, given the prevalence of maths within upper secondary education in Finland, it is to be expected that young adults in that country demonstrate high numeracy proficiency.
Resumo:
The A-level Mathematics qualification is based on a compulsory set of pure maths modules and a selection of applied maths modules with the pure maths representing two thirds of the assessment. The applied maths section includes mechanics, statistics and (sometimes) decision maths. A combination of mechanics and statistics tends to be the most popular choice by far. The current study aims to understand how maths teachers in secondary education make decisions regarding the curriculum options and offers useful insight to those currently designing the new A-level specifications.
Semi-structured interviews were conducted with A-level maths teachers representing 27 grammar schools across Northern Ireland. Teachers were generally in agreement regarding the importance of pure maths and the balance between pure and applied within the A-level maths curriculum. A wide variety of opinions existed concerning the applied options. While many believe that the basic mechanics-statistics (M1-S1) combination is most accessible, it was also noted that the M1-M2 combination fits neatly alongside A-level physics. Lack of resources, timetabling constraints and competition with other subjects in the curriculum hinder uptake of A-level Further Maths.
Teachers are very conscious of the need to obtain high grades to benefit both their pupils and the school’s reputation. The move to a linear assessment system in England while Northern Ireland retains the modular system is likely to cause some schools to review their choice of exam board although there is disagreement as to whether a modular or linear system is more advantageous for pupils. The upcoming change in the specification offers an opportunity to refresh the assessment also and reduce the number of leading questions. However, teachers note that there are serious issues with GCSE maths and these have implications for A-level.