175 resultados para mKdV-Liouville
Resumo:
We study the global bifurcation of nonlinear Sturm-Liouville problems of the form -(pu')' + qu = lambda a(x)f(u), b(0)u(0) - c(0)u' (0) = 0, b(1)u(1) + c(1)u'(1) = 0 which are not linearizable in any neighborhood of the origin. (c) 2005 Published by Elsevier Ltd.
Resumo:
Wigner functions play a central role in the phase space formulation of quantum mechanics. Although closely related to classical Liouville densities, Wigner functions are not positive definite and may take negative values on subregions of phase space. We investigate the accumulation of these negative values by studying bounds on the integral of an arbitrary Wigner function over noncompact subregions of the phase plane with hyperbolic boundaries. We show using symmetry techniques that this problem reduces to computing the bounds on the spectrum associated with an exactly solvable eigenvalue problem and that the bounds differ from those on classical Liouville distributions. In particular, we show that the total "quasiprobability" on such a region can be greater than 1 or less than zero. (C) 2005 American Institute of Physics.
Resumo:
2000 Mathematics Subject Classification: 26A33 (main), 44A40, 44A35, 33E30, 45J05, 45D05
Resumo:
Mathematics Subject Classification: 26A33, 33C20.
Resumo:
Mathematics Subject Classification: 26A33; 70H03, 70H25, 70S05; 49S05
Resumo:
2000 Math. Subject Classification: 26A33; 33E12, 33E30, 44A15, 45J05
Resumo:
2000 Mathematics Subject Classification: 26A33, 33E12, 33C60, 44A10, 45K05, 74D05,
Resumo:
2000 Mathematics Subject Classification: Primary 46F25, 26A33; Secondary: 46G20
Resumo:
This book deals with equations of mathematical physics as the different modifications of the KdV equation, the Camassa-Holm type equations, several modifications of Burger's equation, the Hunter-Saxton equation, conservation laws equations and others. The equations originate from physics but are proposed here for their investigation via purely mathematical methods in the frames of university courses. More precisely, we propose classification theorems for the traveling wave solutions for a sufficiently large class of third order nonlinear PDE when the corresponding profiles develop different kind of singularities (cusps, peaks), existence and uniqueness results, etc. The orbital stability of the periodic solutions of traveling type for mKdV equations are also studied. Of great interest too is the interaction of peakon type solutions of the Camassa-Holm equation and the solvability of the classical and generalized Cauchy problem for the Hunter-Saxton equation. The Riemann problem for special systems of conservation laws and the corresponding -shocks are also considered. As it concerns numerical methods we apply the CNN approach. The book is addressed to a broader audience including graduate students, Ph.D. students, mathematicians, physicist, engineers and specialists in the domain of PDE.
Resumo:
Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.
Resumo:
Mathematics Subject Classification 2010: 35M10, 35R11, 26A33, 33C05, 33E12, 33C20.
Resumo:
Dedicated to 75th birthday of Prof. A.M. Mathai, Mathematical Subject Classification 2010:26A33, 33C10, 33C20, 33C50, 33C60, 26A09
Resumo:
Mathematics Subject Classi¯cation 2010: 26A33, 65D25, 65M06, 65Z05.
Resumo:
MSC 2010: 26A33, 34A37, 34K37, 34K40, 35R11
Resumo:
MSC 2010: 26A33