911 resultados para film narrative structure
Resumo:
The corset, with its laces and stays, appears to the modern eyes little more than a stylish torture device. However, the corset enjoyed a reputation among the most fashionable women of the nineteenth century. Since small waists were the primary measure of corporeal beauty, corsets were nearly universal among Western women of the middle class upwards. Wearing a corset was also a marker of decency; only lower classes and women of dubious reputation did not wear corsets. From instrument of torture and symbol of submission to its appropriation by women as a marker of sexual liberation, the corset has gone under a sartorial and symbolic transformation remaining the most erotic element of women’s dress. This paper discusses the corset in two Australian films, Picnic at Hanging Rock (Peter Weir, 1974) and Moulin Rouge (Baz Luhrman, 2001), arguing that the corset provides a counterpoint in each film signifying the tension between beauty and respectability, on the one hand, and desire and transgression, on the other. We argue that the corset is the primary prop around which the narrative revolves as well as the key signifying hook for the audience. The fact that erotic motifs are so rare in Australian films makes the centrality of the corset in these films even more powerful as a discursive trope
Resumo:
The first part of the title is from Sir Ken Robinson (Robinson, 2009), the esteemed educator and champion of creativity in schools. Sometimes in the face of meeting the demands of time, timetabling, demanding administration tasks and teaching for high stakes testing accountability, we can find ourselves desperate for time to remember that English has always been one of the places in schools where creativity can flourish. English is a place for the play of the imagination. English teachers are the purveyors of narrative; the keepers and teachers of stories. The new Australian Curriculum: English, (Australian Curriculum and Assessment Reporting Authority (ACARA), 2012) asks us to be using ICT technologies in creative ways to tell those stories. The curriculum asks students to access texts receptively and to then speak about, write and create texts productively. There are so many interesting things to do with texts beyond word processing of print based resources. Responding to literature through media is always an alternative option to writing or simply speaking about it. In this paper my QUT pre-service student Chrystal Armitage describes how she made a mini story via a film trailer in response to a short story, ‘Turned’ (Gilman, 1987) in the unit, Literature in Secondary Teaching.
Resumo:
In 2011 Queensland suffered both floods and cyclones, leaving residents without homes and their communities in ruins (2011). This paper presents how researchers from QUT, who are also members of the Oral History Association of Australia (OHAA) Queensland’s chapter, are using oral history, photographs, videography and digital storytelling to help heal and empower rural communities around the state and how evaluation has become a key element of our research. QUT researchers ran storytelling workshops in the capital city of Brisbane i early 2011, after the city suffered sever flooding. Cyclone Yasi then struck the town of Cardwell (in February 2011) destroying their historical museum and recording equipment. We delivered an 'emergency workshop', offering participants hands on use of the equipment, ethical and interviewing theory, so that the community could start to build a new collection. We included oral history workshops as well as sessions on how best to use a video camera, digital camera and creative writing sessions, so the community would also know how to make 'products' or exhibition pieces out of the interviews they were recording. We returned six months later to conduct follow-up workshops and the material produced by and with the community had been amazing. More funding has now been secured to replicate audio/visual/writing workshops in other remote rural Queensland communities including Townsville, Mackay and Cunnamulla and Toowoomba in 2012, highlighting the need for a multi media approach, to leverage the most out of OH interviews as a mechanism to restore and promote community resilience and pride.
Resumo:
Cyclone Yasi struck the Cassowary Coast of Northern Queensland, Australia, in the early hours of February 3, 2011, destroying many homes and property, including the destruction of the Cardwell and district historical society’s premises. With their own homes flattened, many residents were forced to live in mobile accommodation, with extended family, or leave the area altogether. The historical society members seemed, however, particularly devastated by their flattened foreshore museum and loss of their precious collection of material. A call for assistance was made through the Oral History Association of Australia’s Queensland branch (OHAA Qld), which along with a Queensland University of Technology (QUT) research team sponsored a trip to best plan how they could start to pick up the pieces to rebuild the museum. This chapter highlights the need for communities to gather, preserve and present their own stories, in a way that is sustainable and meaningful to them – whether that be because of a disaster, or as they go about life in their contemporary communities – the key being that good advice, professional support and embedded evaluation practices at crucial moments along the way can be critically important.
Resumo:
The effect of the film thickness and postannealing temperature on visible photoluminescence (PL) from Si Nx films synthesized by plasma-assisted radio frequency magnetron sputtering on Si O2 buffer layers is investigated. It is shown that strong visible PL is achieved at annealing temperatures above 650 °C. The optimum annealing temperature for the maximum PL yield strongly depends on the film thickness and varies from 800 to 1200°C. A comparative composition-structure-property analysis reveals that the PL intensity is directly related to the content of the Si-O and Si-N bonds in the Si Nx films. Therefore, sufficient oxidation and moderate nitridation of Si Nx Si O2 films during the plasma-based growth process are crucial for a strong PL yield. Excessively high annealing temperatures lead to weakened Si-N bonds in thinner Si Nx films, which eventually results in a lower PL intensity.
Resumo:
A copolymer comprising 1,4-diketopyrrolo[3,4-c]pyrrole (DPP) and thieno[3,2-b]thiophene moieties, PDBT-co-TT, shows high hole mobility of up to 0.94 cm2 V-1 s-1 in organic thin-film transistors. The strong intermolecular interactions originated from π-π stacking and donor-acceptor interaction lead to the formation of interconnected polymer networks having an ordered lamellar structure, which have established highly efficient pathways for charge carrier transport.
Resumo:
In recent years, the electron-accepting diketopyrrolopyrrole (DPP) moiety has been receiving considerable attention for constructing donor-acceptor (D-A) type organic semiconductors for a variety of applications, particularly for organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). Through association of the DPP unit with appropriate electron donating building blocks, the resulting D-A molecules interact strongly in the solid state through intermolecular D-A and π-π interactions, leading to highly ordered structures at the molecular and microscopic levels. The closely packed molecules and crystalline domains are beneficial for intermolecular and interdomain (or intergranular) charge transport. Furthermore, the energy levels can be readily adjusted, affording p-type, n-type, or ambipolar organic semiconductors with highly efficient charge transport properties in OTFTs. In the past few years, a number of DPP-based small molecular and polymeric semiconductors have been reported to show mobility close to or greater than 1 cm2 V -1 s-1. DPP-based polymer semiconductors have achieved record high mobility values for p-type (hole mobility: 10.5 cm2 V-1 s-1), n-type (electron mobility: 3 cm2 V-1 s-1), and ambipolar (hole/electron mobilities: 1.18/1.86 cm2 V-1 s-1) OTFTs among the known polymer semiconductors. Many DPP-based organic semiconductors have favourable energy levels and band gaps along with high hole mobility, which enable them as promising donor materials for OPVs. Power conversion efficiencies (PCE) of up to 6.05% were achieved for OPVs using DPP-based polymers, demonstrating their potential usefulness for the organic solar cell technology. This article provides an overview of the recent exciting progress made in DPP-containing polymers and small molecules that have shown high charge carrier mobility, around 0.1 cm2 V-1 s-1 or greater. It focuses on the structural design, optoelectronic properties, molecular organization, morphology, as well as performances in OTFTs and OPVs of these high mobility DPP-based materials.
Resumo:
A donor-acceptor polymer semiconductor, PDQT, comprising diketopyrrolopyrrole (DPP) and β-unsubstituted quaterthiophene (QT) for organic thin film transistors (OTFTs) is reported. This polymer forms ordered layer-by-layer lamellar packing with an edge-on orientation in thin films even without thermal annealing. The strong intermolecular interactions arising from the fused aromatic DPP moiety and the DPP-QT donor-acceptor interaction facilitate the spontaneous self-assembly of the polymer chains into close proximity and form a large π-π overlap, which are favorable for intermolecular charge hopping. The well-interconnected crystalline grains form efficient intergranular charge transport pathways. The desirable chemical, electronic, and morphological structures of PDQT bring about high hole mobility of up to 0.97 cm2/(V·s) in OTFTs with polymer thin films annealed at a mild temperature of 100 °C and similarly high mobility of 0.89 cm2/(V·s) for polymer thin films even without thermal annealing.
Resumo:
We investigate the blend morphology and performance of bulk heterojunction organic photovoltaic devices comprising the donor polymer, pDPP-TNT (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1, 4-dione-alt-naphthalene}) and the fullerene acceptor, [70]PCBM ([6,6]-phenyl C71-butyric acid methyl ester). The blend morphology is heavily dependent upon the solvent system used in the fabrication of thin films. Thin films spin-coated from chloroform possess a cobblestone-like morphology, consisting of thick, round-shaped [70]PCBM-rich mounds separated by thin polymer-rich valleys. The size of the [70]PCBM domains is found to depend on the overall film thickness. Thin films spin-coated from a chloroform:dichlorobenzene mixed solvent system are smooth and consist of a network of pDPP-TNT nanofibers embedded in a [70]PCBM-rich matrix. Rinsing the films in hexane selectively removes [70]PCBM and allows for analysis of domain size and purity. It also provides a means for investigating exciton dissociation efficiency through relative photoluminescence yield measurements. Devices fabricated from chloroform solutions show much poorer performance than the devices fabricated from the mixed solvent system; this disparity in performance is seen to be more pronounced with increasing film thickness. The primary cause for the improved performance of devices fabricated from mixed solvents is attributed to the greater donor-acceptor interfacial area and resulting greater capacity for charge carrier generation.
Resumo:
Law is narration: it is narrative, narrator and the narrated. As a narrative, the law is constituted by a constellation of texts – from official sources such as statutes, treaties and cases, to private arrangements such as commercial contracts, deeds and parenting plans. All are a collection of stories: cases are narrative contests of facts and rights; statutes are recitations of the substantive and procedural bases for social, economic and political interactions; private agreements are plots for future relationships, whether personal or professional. As a narrator, law speaks in the language of modern liberalism. It describes its world in abstractions rather than in concrete experience, universal principles rather than individual subjectivity. It casts people into ‘parties’ to legal relationships; structures human interactions into ‘issues’ or ‘problems’; and tells individual stories within larger narrative arcs such as ‘the rule of law’ and ‘the interests of justice’. As the narrated, the law is a character in its own story. The scholarship of law, for example, is a type of story-telling with law as its central character. For positivists, still the dominant group in the legal genre, law is a closed system of formal rules with an “immanent rationality” and its own “structure, substantive content, procedure and tradition,” dedicated to finality of judgment. For scholars inspired by the interpretative tradition in the humanities, law is a more ambivalent character, susceptible to influences from outside its realm and masking a hidden ideological agenda under its cloak of universality and neutrality. For social scientists, law is a protagonist on a wider social stage, impacting on society, the economy and the polity is often surprising ways.
Resumo:
This paper explores the efficacy of narrative in reflective practice across a range of creative disciplines. As practitioners within the creative industries the authors internalise experience and re-contextualise it as stories, designs, music videos, fiction and non-fiction films and dance. They are uniquely placed to examine narrative in critical reflection through the prism of their creative practice and in so doing offer insights into reconceptualising professional practice. The authors demonstrate how engagement with and reflection on and in their stories enables wider reflection. Their purpose in reflection is not just to learn from mistakes but to develop an epistemology of practice that enables them to apply rigorous academic inquiry to articulate their tacit professional knowledge and establish new methods for dealing with uncertainty in creative practice research.
Resumo:
The present study aims to elucidate the modifications in the structure and functionality of the phospholipid matrix of biological membranes brought about by free radical-mediated oxidative damage of its molecular constituents. To this end, the surface properties of two oxidatively modified phospholipids bearing an aldehyde or carboxyl function at the end of truncated sn-2 acyl chain were studied using a Langmuir balance. The results obtained reveal both oxidized species to have a significant impact on the structural dynamics of phospholipid monolayers, as illustrated by the progressive changes in force-area isotherms with increasing mole fraction of the oxidized lipid component. Moreover, surface potential measurements revealed considerable modifications in the electric properties of oxidized phospholipid containing monolayers during film compression, suggesting a packing state-controlled reorientation of the intramolecular electric dipoles of the lipid headgroups and acyl chains. Based on the above findings, a model describing the conformational state of oxidized phospholipid molecules in biological membranes is proposed, involving the protrusion of the acyl chains bearing the polar functional groups out from the hydrocarbon phase to the surrounding aqueous medium. Oxidative modifications alter profoundly the physicochemical properties of unsaturated phospholipids and are therefore readily anticipated to have important implications for their interactions with membrane-associating molecules. Along these lines, the carboxyl group bearing lipid was observed to bind avidly the peripheral membrane protein cytochrome c. The binding was reversed following increase in ionic strength or addition of polyanionic ATP, thus suggesting it to be driven by electrostatic interactions between cationic residues of the protein and the deprotonated lipid carboxyl exposed to the aqueous phase. The presence of aldehyde function bearing oxidized phospholipid was observed to enhance the intercalation of four antimicrobial peptides into phospholipid monolayers and liposomal bilayers. Partitioning of the peptides to monolayers was markedly attenuated by the aldehyde scavenger methoxyamine, revealing it to be mediated by the carbonyl moiety possibly through efficient hydrogen bonding or, alternatively, formation of covalent adduct in form of a Schiff base between the lipid aldehydes and primary amine groups of the peptide molecules. Lastly, both oxidized phospholipid species were observed to bind with high affinity three small membrane-partitioning therapeutic agents, viz. chlorpromazine, haloperidol, and doxorubicin. In conclusion, the results of studies conducted using biomimetic model systems support the notion that oxidative damage influences the molecular architecture as well as the bulk physicochemical properties of phospholipid membranes. Further, common polar functional groups carried by phospholipids subjected to oxidation were observed to act as molecular binding sites at the lipid-water interface. It is thus plausible that oxidized phospholipid species may elicit cellular level effects by modulating integration of various membrane-embedded and surface-associated proteins and peptides, whose conformational state, oligomerization, and functionality is known to be controlled by highly specific lipid-protein interactions and proper physical state of the membrane environment.
Resumo:
In this paper, we report the synthesis and self assembly of various sizes of ZnO nanocrystals. While the crystal structure and the quantum confinement of nanocrystals were mainly characterized using XRD and UV absorption spectra, the self assembly and long range ordering were studied using scanning tunneling microscopy after spin casting the nanocrystal film on the highly oriented pyrolytic graphite surface. We observe self assembly of these nanocrystals over large areas making them ideal candidates for various potential applications. Further, the electronic structure of the individual dots is obtained from the current-voltage characteristics of the dots using scanning tunneling spectroscopy and compared with the density of states obtained from the tight binding calculations. We observe an excellent agreement with the experimentally obtained local density of states and the theoretically calculated density of states.
Resumo:
Mannans are abundant plant polysaccharides found in the endosperm of certain leguminous seeds (guar gum galactomannan, GG; locust bean gum galactomannan, LBG), in the tuber of the konjac plant (konjac glucomannan, KGM), and in softwoods (galactoglucomannan, GGM). This study focused on the effects of the chemical structure of mannans on their film-forming and emulsion-stabilizing properties. Special focus was on spruce GGM, which is an interesting new product from forest biorefineries. A plasticizer was needed for the formation of films from mannans other than KGM and the optimal proportion was 40% (w/w of polymers) glycerol or sorbitol. Galactomannans with lower galactose content (LBG, modified GG) produced films with higher elongation at break and tensile strength. The mechanical properties of GG-based films were improved by decreasing the degree of polymerization of the polysaccharide with moderate mannanase treatments. The improvement of mechanical properties of GGM-based films was sought by blending GGM with each of poly(vinyl alcohol) (PVOH), corn arabinoxylan (cAX), and KGM. Adding other polymers increased the elongation at break of GGM blend films. The tensile strength of films increased with increasing amounts of PVOH and KGM, but the effect of cAX was the opposite. Dynamic mechanical analysis showed two separate loss modulus peaks for blends of GGM and PVOH, but a single peak for all other films. Optical and scanning electron microscopy confirmed good miscibility of GGM with cAX and KGM. In contrast, films blended from GGM and PVOH showed phase separation. GGM and KGM were mixed with cellulose nanowhiskers (CNW) to form composite films. Addition of CNW to KGM-based films induced the formation of fiberlike structures with lengths of several millimeters. In GGM-based films, rodlike structures with lengths of tens of micrometers were formed. Interestingly, the notable differences in the film structure did not appear to be related to the mechanical and thermal properties of the films. Permeability properties of GGM-based films were compared to those of films from commercial mannans KGM, GG, and LBG. GGM-based films had the lowest water vapor permeability when compared to films from other mannans. The oxygen permeability of GGM films was of the same magnitude as that of commercial polyethylene / ethylene vinyl alcohol / polyethylene laminate film. The aroma permeability of GGM films was low. All films were transparent in the visible region, but GGM films blocked the light transmission in the ultraviolet region of the spectra. The stabilizing effect of GGM on a model beverage emulsion system was studied and compared to that of GG, LBG, KGM, and cAX. In addition, GG was enzymatically modified in order to examine the effect of the degree of polymerization and the degree of substitution of galactomannans on emulsion stability. Use of GGM increased the turbidity of emulsions both immediately after preparation and after storage of up to 14 days at room temperature. GGM emulsions had higher turbidity than the emulsions containing other mannans. Increasing the storage temperature to +45 ºC led to rapid emulsion breakdown, but a decrease in storage temperature increased emulsion stability after 14 days. A low degree of polymerization and a high degree of substitution of the modified galactomannans were associated with a decrease in emulsion turbidity.